S.E. d’ArbeloffÁ
/
Wilson et al. / Journal of Organometallic Chemistry 672 (2003) 1Á
/10
9
3J(PC) 11 Hz], 11.5 [s, 10C, 2{h5-C5(CH3)5}] ppm. EIMS
m/z (%): 595 (22) [Mꢀ], 492 [Mꢂ(PhCN)]ꢀ, 392 [Mꢂ
(PhCN)ꢂ
(PCtBu)]ꢀ. Anal. Found C, 63.83; H, 7.34; N,
1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www:
http://www.ccdc.cam.ac.uk).
/
/
/
2.52; S, 5.11. Calc. for ZrC32H44SPN: C, 63.65; H, 7.58;
N, 2.39; S, 6.65%.
Acknowledgements
3.6. [Zr(h5-C5Me5)2{SC(tBu)PC(NtBu)}] (13)
We thank the Royal Society for a travel grant to help
finance this collaboration.
[Zr(h5-C5Me5)2(SC(tBu)P)] (4) (0.275 g, 0.557 mmol)
was then dissolved in toluene (12 ml) and tBuNC (0.051
g, 0.613 mmol) was added dropwise. The reaction
mixture was allowed to stir for 24 h, during which
time the solution turned from light to dark red. The
volatiles were removed in vacuo and the residue was
extracted with hexane (15 ml), giving 13 as a red solid
(yield 0.253g, 79%).
References
[1] E.I. Stiefel, K. Matsumoto (Eds.), Transition Metal Sulfur
Chemistry, Biological and Industrial Significance, American
Chemical Society, Washington, DC, 1996.
[2] E.I. Stiefel, D. Coucouvanis, W.E. Newton (Eds.), Molybdenum
Enzymes, Cofactors and Model Systems, American Chemical
Society, Washington, DC, 1993.
NMR data (all in benzene-d6, 295 K).
1
31P{1H}: d 162.6 ppm; H: d 1.79 [s, 9H, PC(CH3)3],
1.71 [s, 30H, 2{h5-C5(CH3)5}], 1.42 [s, 9H, NC(CH3)3]
[3] M. Rakowski, B.R. DuBois, B.R. Jagirdar, S. Dietz, B.C. Noll,
Organometallics 16 (1997) 294 (and references therein).
[4] A.A. Eagle, S.M. Harben, E.R.T. Tiekink, C.G. Young, J. Am.
Chem. Soc. 116 (1994) 9749.
1
ppm. 13C{1H}: d 270.7 [d, 1C, NCC(CH3)3, J(PC) 80
1
Hz], 248.8 [d, 1C PCC(CH3)3, J(PC) 68 Hz] 116.4 [s,
10C,2{h5-C5(CH3)5}], 46.7 [d, 1C, PCC(CH3)3, 2J(PC) 23
[5] T. Shibahara, G. Sakane, S. Mochida, J. Am. Chem. Soc. 115
(1993) 10408.
Hz], 34.9 [d, 3C, NCC(CH3)23J(PC) 11 Hz], 34.5 [d, 1C,
3
PCC(CH3)3, J(PC) 13 Hz], 31.2 [d, 1C, NCC(CH3)3
[6] J.T. Goodman, T.B. Rauchfuss, Angew. Chem. Int. Ed. Engl. 36
(1997) 2083.
3J(PC) 6 Hz], 12.6 [s, 10C, 2{h5-C5(CH3)5}] ppm. EIMS
/
m/z (%): 575 (68) [Mꢀ], 492 [Mꢂ t
/
( BuNC)]ꢀ, 392 [Mꢂ
[7] H. Kawaguchi, K. Tatsumi, J. Am. Chem. Soc. 117 (1995) 3885.
[8] S.E. d’Arbeloff, P.B. Hitchcock, J.F. Nixon, T. Nagasawa, H.
Kawaguchi, K. Tatsumi, J .Organometal Chem. 564 (1998) 189.
[9] M. Regitz, Chem. Rev. 90 (1990) 191.
(tBuNC)ꢂ
/
(PCtBu)]ꢀ.
[10] K.B. Dillon, F. Mathey, J.F. Nixon in, Phosphorus the Carbon
Copy, Ch. 4, Wiley, Chichester, 1998.
3.7. X-ray structure determination of 4, 9, 11 and 12
[11] T. Wettling, J. Schneider, O. Wagner, C.G. Kreiter, M. Regitz,
Angew. Chem. Int. Ed. Engl. 28 (1989) 1013.
Intensity data for 4, 9, 11 and 12 were collected on a
Quantum CCD/Rigaku AFC7 diffractometer at ꢂ80 8C
using MoÁKa graphite collimated radiation (lꢁ
/
[12] T. Wettling, B. Geissler, R. Schneider, S. Barth, P. Binger, M.
Regitz, Angew. Chem. Int. Ed. Engl. 31 (1992) 758.
[13] B. Geissler, S. Barth, U. Bergstrasser, M. Slary, J. Durkin, P.B.
Hitchcock, M. Hofmann, P. Binger, J.F. Nixon, P.R. v. Schleyer,
M. Regitz, Angew. Chem. 34 (1995) 484.
/
/
˚
0.71069 A). Absorption corrections were applied, and
the structures were solved using direct methods and
refined by full-matrix least-squares on F using the
TEXSAN package. Anisotropic refinement was applied
to all non-hydrogen atoms, and all hydrogen atoms were
put at calculated positions. For 4, sulfur, phosphorus
and carbons of the tert-butyl group are disordered with
occupancy factors of 55:45. In the case of 5, selenium,
phosphorus, and carbons of the tert-butyl group are
disordered with occupancy factors of 57:43, and they are
isotropically refined. These crystallographic data are
summarised in Table 1.
[14] T. Wettling, B. Geissler, S. Barth, P. Binger, M. Regitz, Synthesis
(1994) 1337.
[15] A.H. Cowley, S.W. Hall, C.M. Nunn, J.M. Power, Angew. Chem.
Int. Ed. Engl. 27 (1988) 838.
[16] F.G.N. Cloke, P.B. Hitchcock, J.F. Nixon, D.J. Wilson, P.
Mountford, J. Chem. Soc. Chem. Commun. (1999) 661.
[17] F.G.N. Cloke, P.B. Hitchcock, J.F. Nixon, D.J. Wilson, F.
Tabellion, U. Fishbeck, F. Preuss, M. Regitz, L. Nyulaszi, J.
Chem. Soc. Chem. Commun. (1999) 2363.
[18] S.M. Pugh, D.J.M. Trosch, D.J. Wilson, A. Bashall, F.G.N.
Cloke, L.H. Gade, P.B. Hitchcock, M. McPartlin, J.F. Nixon, P.
Mountford, Organometallics 19 (2000) 3205.
[19] M.R. Smith, III, P.T. Matsunaga, R.A. Anderson, J. Am. Chem.
Soc. 115 (1993) 7049.
[20] Z.K. Sweeney, J.L. Polse, R.A. Anderson, R.G. Bergman, M.G.
Kubinec, J. Am. Chem. Soc. 119 (1997) 4543.
4. Supplementary material
[21] M.J. Carney, P.J. Walsh, F.J. Hollander, R.G. Bergman, Orga-
nometallics 11 (1992) 761.
Crystallographic data for the structural analysis have
been deposited with the Cambridge Crystallographic
[22] M.J. Carney, P.J. Walsh, F.J. Hollander, R.G. Bergman, J. Am.
Chem. Soc. 111 (1989) 8751.
Data Centre, CCDC nos. 174602Á174605 for 4, 9, 11
/
[23] W.A. Howard, M. Waters, G. Parkin, J. Am. Chem. Soc. 115
(1993) 4917.
[24] P. Binger, B. Biedenbach, A.T. Hermann, F. Langhauser, P. Betz,
and 12, respectively. Copies of this information may be
obtained free of charge from The Director, CCDC, 12
Union Road, Cambridge CB2 1EZ, UK (Fax: ꢀ
/
44-
R. Goddard, C. Kruger, Chem. Ber. 123 (1990) 1617.
¨