244
C. Sun et al. / Journal of Organometallic Chemistry 582 (1999) 235–245
1
Org. Chem. 47 (1982) 5326. (e) M. Sohn, J. Blum, J. Am.
Chem. Soc. 101 (1979) 2694. (f) J.M. Brown, B.T. Golding,
J.J. Stofko Jr., J. Chem. Soc. Perkin Trans. 2 (1978) 436. (g)
R.G. Salomon, M.F. Salomon, J.L.C. Kachinski, J. Am.
Chem. Soc. 99 (1977) 1043. (h) T.H. Johnson, T.F. Baldwin, J.
Org. Chem. 45 (1980) 140. (i) P.G. Gassman, T.J. Atkins, J.
Am. Chem. Soc. 94 (1972) 7748. See other examples for catal-
ysis involving strained cyclopropane systems. (j) H.C. Volger,
H. Hogeveen, M.M.P. Gaasbeek, J. Am. Chem. Soc. 91 (1969)
2138. (k) H. Hogeveen, H.C. Volger, J. Am. Chem. Soc. 89
(1967) 2486. (l) T.J. Katz, S. Cerefice, J. Am. Chem. Soc. 91
(1969) 2405.
66%) was isolated as a faint yellow oil. H-NMR (300
MHz, CDCl3): 7.57 (d, J=9.0 Hz, H-Ar), 7.47 (d,
J=9.0 Hz, 1H, H-Ar), 4.25 (d, J=6.0 Hz, 1H, H–
C–O), 1.09 (m, 1H, cyclopropyl), 0.92 (dt, J=2.9,
8.0 Hz, 9H, CH3), 0.55 (m, 10H, Si–CH2 and cyclo-
propyl), 0.46 (m, 2H, cyclopropyl), 0.37 (m, 1H, cy-
clopropyl). 13C-NMR (75 MHz, CDCl3): 149.6 (Ar),
129.2 (q, JC–F=31.2 Hz, Ar), 126.1 (Ar), 125.0 (Ar),
125.0 (Ar), 76.8 (C-O), 20.1 (cyclopropyl), 6.7 (CH3),
4.9 (Si–C), 3.2 (cyclopropyl), 2.5 (cyclopropyl). IR
(neat): 3084(m), 3009(m), 2957(s), 1619(m), 1321(vs),
1164(s), 1128(vs).
[12] Voigt differentiated the reactivity of vinylcyclopropanes and
acyl-substituted cyclopropanes based on the indifference of
acyl cyclopropanes towards rearrangement. H.M. Voigt, J.A.
Roth, J. Catal. (1974) 91.
[13] (Z)-1-phenyl-1-triethylsiloxy-1-butene (98%) and (E)-1-phenyl-
1-triethylsiloxy-1-butene (2%) were prepared by enolization of
butrophenone with LDA and trapping the enolate with chloro-
triethylsilane. See: C.H. Heathcock, S.K. Davidsen, K.T. Hug,
L.A. Flippin, J. Org. Chem. 51 (1986) 3027.
[14] Asymmetric hydrosilylation of cyclopropyl phenyl ketone has
been achieved with 1,5-cyclooctadienerhodium chloride dimer-
pyridinethiazolidene catalyst. No ring-opened products were
identified in the reaction. H. Brunner, A. Kuerzinger, J.
Organomet. Chem. 346 (1988) 413.
[15] The 31P-NMR spectrum in these non-catalytic mixtures gave
several resonances and the identity of each product could not
be asserted.
Acknowledgements
The authors gratefully acknowlede the generous
support of the National Science Foundation (Grant
No. CHE-9200699) and also Johnson Matthey for a
generous loan of rhodium(III) chloride hydrate.
References
[1] I. Ojima, Z. Li, J. Zhu, Recent advances in the hydrosilylation
and related reactions, in: Z. Rappoport, Y. Apeloig (Eds.),
The Chemistry of Organic Silicon Compounds, Wiley, New
York, 1998, p. 1687.
[2] I.A. Lorkovic, R.R. Duff Jr., M.S. Wrighton, J. Am. Chem.
Soc. 117 (1995) 3617.
[3] (a) E.N. Jacobsen, W. Zhang, M.L. Guler, J. Am. Chem. Soc.
113 (1991) 6703. (b) H. Nishiyama, S. Yanagushi, M. Kondo,
K. Itoh, J. Org. Chem. 57 (1992) 4306. (c) T.V. Rajanbabu,
A.L. Casalnuovo, J. Am. Chem. Soc. 114 (1992) 6265. (d)
T.V. Rajanbabu, T.A. Ayers, A.L. Casalnuovo, J. Am. Chem.
Soc. 116 (1994) 4101.
[4] (a) T.H. Chan, Z.G. Zheng, Tetrahedron Lett. 34 (1993) 3095.
(b) G.Z. Zheng, T.H. Chan, Organometallics 14 (1995) 70. (c)
H. Nagashima, K. Tatebe, T. Ishibashi, A. Nakaoka, J.
Sakakibara, K. Itoh, Organometallics 14 (1995) 2868.
[5] S.A. Westcott, H.P. Blom, T.B. Marder, R.T. Baker, J. Am.
Chem. Soc. 114 (1992) 8863.
[16] Authentic samples of ether 9 were prepared and the methine
hydrogen signal matched the resonance frequency.
[17] Three different concentrations of ketone (3.50, 1.73 and 1.12
M) were investigated. Each showed an initial linear region
followed by a region of logarithmic decay.
[18] Ketone coordination with silylhydridorhodium has been shown
to be the rate-determining step at low ketone concentration. I.
Kolb, J. Hetflejs, Collect. Czech. Chem. Commun. 45 (1980)
2224.
[19] I. Ojima, M. Kumagai, J. Organomet. Chem. 111 (1976) 43.
[20] (a) A.J. Chalk, J.F. Harrod, J. Am. Chem. Soc. 87 (1965) 16.
(b) I. Ojima, M. Nihonyanagi, Y. Nagai, Bull. Chem. Soc.
Jpn. 45 (1972) 3722. (c) I. Ojima, T. Kogure, M. Kumagai, S.
Horiuchi, T. Sato, J. Organomet. Chem. 122 (1976) 83. (d) K.
Yamamoto, T. Hayashi, M. Kumada, J. Organomet. Chem.
113 (1976) 124. (e) J.F. Peyronel, H.B. Kagan, Nouv. J.
Chem. 2 (1978) 211.
[6] G.A Slough, J.R Ashbaugh, L.A. Zannoni, Organometallics 13
(1994) 3587.
[21] L.A. Zannoni, G.A. Slough, unpublished results.
[22] (a) C.P. Casey, P.C. Vosejpka, J.A. Gavney, Jr., J. Am. Chem.
Soc. 112 (1990) 4083. (b) C.P. Casey, P.C. Vosejpka, T.L.
Underinger, G.A. Slough, J.A. Gavney Jr., J. Am. Chem. Soc.
115 (1993) 6680. (c) C.P. Casey, T.L. Underinger, P.C. Vose-
jpka, G.A. Slough, J.A. Gavney Jr., R.K. Hayashi,
Organometallics 16 (1997) 2189.
[7] Two previous papers used h3-allyl rhodium(I) complexes as a
catalyst precursor. Neither paper identified the rhodium mate-
rial produced when reacted with organosilane. (a) M. Bottrill,
M.J. Green, Organomet. Chem. 111 (1976) C6. (b) J. Rejhon,
J. Hetflejs, Collect. Czech. Chem. Commun. 40 (1975) 3190.
[8] M. Aizenberg, D. Milstein, Angew. Chem. Int. Engl. 33 (1994)
317.
[23] S. Chemaly, J.M. Pratt, J. Chem. Soc. Chem. Commun. (1976)
988.
[9] D.L. Thorn, R.L. Harlow, Inorg. Chem. 29 (1990) 2017.
[10] M.S. Eitz, M.S. Wrighton, Angew. Chem. Int. Ed. Engl. 27
(1988) 289.
[11] Several homogenous rhodium(I), rhodium(II), platinum(II),
copper, and ruthenium(II) complexes efficiently catalyze struc-
tural rearrangements of cyclopropane derivatives. (a) J.
Halpern, in: I. Wender, P. Pino (Eds.), Organic Syntheses Via
Metal Carbonyls, vol. II, Wiley, New York, 1977, p. 705. (b)
K.C. Bishop III, Chem. Rev. 76 (1976) 461. (c) S. Sarel, Acc.
[24] A.D. Berry, E.R. Corey, A.P. Hagan, A.G. MacDiarmid, F.E.
Saalfeld, B.B. Wayland, J. Am. Chem. Soc. 92 (1970) 1940.
Other explanations regarding bonding of electropositive ele-
ments to metals have also appeared. For example: B.Y.K. Ho,
J.J. Zuckerman, J. Organomet. Chem. 49 (1973) 1.
[25] (a) Z. Majerski, P.R. Von Schleyer, J. Am. Chem. Soc. 93
(1971) 665. (b) K.B. Wiberg, G. Szeimies, J. Am. Chem. Soc.
92 (1970) 572.
[26] S. Danishefsky, Acc. Chem. Res. 18 (1979) 12.
Chem. Res. 11 (1978) 204. (d) M.P. Doyle, D. van Leusen, J.
.