J.A. Mikroyannidis et al. / Organic Electronics 11 (2010) 1242–1249
1249
[12] R. Chen, X. Yang, H. Tian, X. Wang, A. Hagfeldt, L. Sun, Chem. Mater.
19 (2007) 4007.
4. Conclusions
[13] S. Hwang, J.H. Lee, C. Park, H. Lee, C. Kim, C. Park, M.-H. Lee, W. Lee, J.
Park, K. Kim, N.-G. Park, C. Kim, Chem. Commun. 46 (2007) 4887.
[14] K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K.
Sayama, H. Sugihara, H. Arakawa, J. Phys. Chem. B 107 (2003) 597.
[15] H. Choi, C. Baik, S.O. Kang, J. Ko, M.S. Kang, Md.K. Nazeeruddin, M.
Grätzel, Angew. Chem., Int. Ed. 47 (2008) 327.
Two new photosensitizers D1 and D2 based on 4-nitro-
-cyanostilbene with carboxy or hydroxyl anchoring group
a
were synthesized in high yields from a one-step reaction
only. The long-wavelength absorption maximum was lo-
cated at 617–655 nm with thin film absorption onset at
761 nm which corresponds to an optical band gap of
1.63 eV. Quasi solid state dye-sensitized solar cells were
fabricated using polymer gel electrolyte and dyes D1 and
D2. In DSSC based on D1, IPCE about 70% at the absorption
maxima was observed with overall PCE of 4.8%. The lower
PCE in the case of D2 is ascribed to the reduction in the
photocurrent due to less dye loading on the TiO2 surface,
since D2 has the OH anchoring group. The lower PCE of
the DSSC based on the D2 has also been ascribed in terms
of increased recombination rate and lower electron life-
time. It was found that the PCE of the DSSCs has been en-
hanced when a nitrogen doped TiO2 photoanode is used.
The increase in PCE is attributed to the retardation of
charge recombination and the introduction of nitrogen,
which replaced the oxygen deficiency in the titania crystal
lattice. The enhanced electron lifetime for doped TiO2
DSSCs could be attributed to the formation of O–Ti–N in
the TiO2 electrode to retard the recombination reaction at
the TiO2/electrolyte interface, as compared to DSSC based
on undoped TiO2 electrode. Additionally, the Efb of TiO2 is
also affected slightly by the presence of nitrogen which is
responsible for the improvement in Voc and PCE.
[16] S. Kim, H. Choi, D. Kim, K. Song, S.O. Kang, J. Ko, Tetrahedron 63
(2007) 9206.
[17] W.-H. Liu, I.-C. Wu, C.-H. Lai, C.-H. Lai, P.-T. Chou, Y.-T. Li, C.-L. Chen,
Y.-Y. Hsub, Y. Chi, Chem. Commun. 41 (2008) 5152.
[18] (a) C.P. Hsieh, H.P. Lu, C.L. Chiu, C.W. Lee, S.H. Chuang, C.L. Mai, W.N.
Yen, S.J. Hsu, E.W.G. Diau, C.Y. Yeh, J. Mater. Chem. 20 (2010) 1134;
(b) J.A. Mikroyannidis, M.M. Stylianakis, P. Suresh, M.S. Roy, G.D.
Sharma, Energy Environ. Sci. 2 (2009) 1301;
(c) J.A. Mikroyannidis, M.M. Stylianakis, M.S. Roy, P. Suresh, G.D.
Sharma, J. Power Sources 194 (2009) 1179;
(d) W. Zhang, Z. Fang, M.J. Su, M. Saeys, B. Liu, Macromol. Rapid
Commun. 30 (2009) 1537;
(e) C.W. Lee, H.P. Lu, C.M. Lan, Y.L. Huang, Y.R. Liang, W.N. Yen, Y.C.
Liu, Y.S. Lin, E.W.G. Diau, C.Y. Yeh, Chem. Eur. J. 15 (2009) 1412;
(f) N. Koumura, Z.-S. Wang, M. Miyashita, Y. Uemura, H. Sekiguchi,
Y. Cui, A. Mori, S. Mori, K. Hara, J. Mater. Chem. 19 (2009) 4829.
[19] (a) Q.H. Yao, F.S. Meng, F.Y. Li, H. Tian, C.H. Huang, J. Mater. Chem.
13 (2003) 048;
(b) M. Xu, S. Wenger, H. Bala, D. Shi, R. Li, T. Zhou, S.M. Zakeeruddin,
M. Grätzel, P. Wang, J. Phys. Chem. C 113 (2009) 2966.
[20] Z.S. Wang, F.Y. Li, C.H. Huang, Chem. Commun. (2000) 2063.
[21] B.C. O’Regan, S. Scully, A.C. Mayer, E. Palomares, J. Durrant, J. Phys.
Chem. B 109 (2005) 4616.
[22] (a) J.A. Mikroyannidis, M.M. Stylianakis, P. Balraju, P. Suresh, G.D.
Sharma, ACS Appl. Mater. Interfaces 1 (8) (2009) 1711;
(b) J.A. Mikroyannidis, M.M. Stylianakis, P. Suresh, P. Balraju, G.D.
Sharma, Org. Electron. 10 (7) (2009) 1320;
(c) J.A. Mikroyannidis, S.S. Sharma, Y.K. Vijay, G.D. Sharma, ACS
Appl. Mater. Interfaces 2 (1) (2010) 270.
[23] J.A. Mikroyannidis, A. Kabanakis, P. Balraju, G.D. Sharma, J. Phys.
Chem. C, submitted for publication.
[24] R. Merck, Bull. Soc. Chim. Belg. 58 (1949) 460.
[25] H.S. Blair, T.-K. Law, Polymer 21 (1980) 1475.
[26] G.R. Robertson, Org. Synth. Coll. 1 (1941) 396, 2 (1922) 57.
[27] (a) N. Cho, H. Choi, D. Kim, K. Song, M.S. Kang, S.O. Kang, J. Ko,
Tetrahedron 65 (2009) 6236;
(b) K. Sayama, K. Hara, N. Mori, M. Satsuki, S. Suga, S. Tsukagoshi, Y.
Abe, H. Sugihara, H. Arakawa, Chem. Commun. (2000) 1173.
[28] H. Tian, X. Yang, J. Cong, R. Chen, C. Teng, J. Liu, Y. Hao, L. Wang, L.
Sun, Dyes Pigm. 84 (2010) 62.
[29] G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, P. Wang, Chem.
Commun. (2009) 2198.
[30] (a) N. Koumura, Z.S. Wang, S. Mori, M. Miyashita, E. Suzuki, K. Hara,
J. Am. Chem. Soc. 128 (2006) 14256;
References
[1] B. O’Regan, M. Grätzel, Nature 353 (1991) 737.
[2] A. Hagfeldt, M. Grätzel, Acc. Chem. Res. 33 (2000) 269.
[3] M.K. Nazeeruddin, P. Pechy, M. Grätzel, Chem. Commun. (1997)
1705.
[4] A. Hagfeldt, M. Grätzel, Chem. Rev. 95 (1995) 49.
[5] H.J. Snaith, L. Schmidt-Mende, Adv. Mater. 19 (2007) 3187.
[6] (a) Md.K. Nazeeruddin, S.M. Zakeeruddin, R. Humphry-Baker, M.
Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C.-H. Fischer, M.
Grätzel, Inorg. Chem. 38 (1999) 6298;
(b) M. Miyashita, K. Sunahara, T. Nishikawa, Y. Uemura, N. Koumura,
K. Hara, A. Mori, T. Abe, E. Suzuki, S. Mori, J. Am. Chem. Soc. 130
(2008) 17874.
(b) P. Wang, B. Wenger, R. Humphry-Baker, J.E. Moser, J. Teuscher,
W. Kantlehner, J. Mezger, E.V. Stoyanov, S.M. Zakeeruddin, M.
Grätzel, J. Am. Chem. Soc. 127 (2005) 6850;
(c) P. Wang, C. Klein, R. Humphry-Baker, S.M. Zakeeruddin, M.
Grätzel, J. Am. Chem. Soc. 127 (2005) 808;
(d) L. Schmidt-Mende, J.E. Kroeze, J.R. Durrant, M.K. Nazeeruddin, M.
Grätzel, Nano Lett. 5 (2005) 1315;
(e) C.S. Karthikeyan, H. Wietasch, M. Thelakkat, Adv. Mater. 19
(2007) 1091;
(f) A. Staniszewski, S. Ardo, Y. Sun, F.N. Castellano, G.J. Meyer, J. Am.
Chem. Soc. 130 (2008) 11586;
(g) Y. Cao, Y. Bai, Q. Yu, Y. Cheng, S. Liu, D. Shi, F. Gao, P. Wang, J.
Phys. Chem. C 113 (2009) 6290.
[31] M. Adachi, M. Sakamoto, J. Jin, Y. Ogata, S. Isoda, J. Phys. Chem. B 110
(2006) 13872.
[32] N.W. Duffy, L.M. Peter, K.G.U. Wijayantha, Electrochem. Commun. 2
(2000) 262.
[33] J. Bisquert, V.S. Vikhrenko, J. Phys. Chem. B 108 (2004) 2313.
[34] (a) M. Berginc, M. Hocevar, U.O. Krasovec, A. Hinsch, R. Santrawan,
M. Topic, Thin Solid Films 516 (2008) 4645;
(b) M.S. Kang, K.S. Ahn, J.W. Lee, J. Power Sources 180 (2008) 896.
[35] (a) I. Inakamura, N. Negishi, S. Kutsuma, T. Ihara, S. Sugihara, K.
Takeuchi, J. Mol. Catal. A: Chem. 161 (2000) 205;
(b) H. Irie, Y. Watanabe, K. Hashimoto, J. Phys. Chem. B 107 (2003)
5483.
[36] M. Mrowetz, W. Balcerski, A.J. Colussi, M.R. Hoffmann, J. Phys. Chem.
B 108 (2004) 17269.
[37] (a) R. Asahi, T. Morkawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293
(2001) 269;
[7] M.K. Nazeeruddin, P. Péchy, T. Renouard, S.M. Zakeeruddin, R.
Humphry- Baker, P. Comte, P. Liska, Le Cevey, E. Costa, V. Shklover,
L. Spiccia, G.B. Deacon, C.A. Bignozzi, M. Grätzel, J. Am. Chem. Soc.
123 (2001) 1613.
[8] S. Ito, S.M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P.
Comte, Md.K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida,
M. Grätzel, Adv. Mater. 18 (2006) 1202.
[9] K. Hara, Z.-S. Wang, T. Sato, A. Furube, R. Katoh, H. Sugihara, Y. Dan-
oh, C. Kasada, A. Shinpo, S. Suga, J. Phys. Chem. B 109 (2005) 15476.
[10] Z.-S. Wang, N. Koumura, Y. Cui, M. Takahashi, H. Sekiguchi, A. Mori,
T. Kubo, A. Furube, K. Hara, Chem. Mater. 20 (2008) 3993.
[11] S. Kim, J.K. Lee, S.O. Kang, J. Ko, J.H. Yum, S. Fantacci, F. De Angelis, D.
Di Censo, Md.K. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 128
(2006) 16701.
(b) T. Lindgren, J.M. Mwabora, E.D. Avendano Soto, J. Jonsson, A.
Hoel, C.G. Granqvist, S.E. Lindquist, J. Phys. Chem. B 107 (2003) 5709;
(c) S. Sakthivel, H. Kisch, Chem. Phys. Chem. 4 (2003) 487.
[38] T. Ma, M. Akiyama, E. Abe, I. Imai, Nano Lett. 5 (2005) 2543.
[39] T.C. Jagadake, S.P. Takale, R.S. Sonawane, H.M. Joshi, S.I. Patil, B.B.
S.B. Ogale, J. Phys. Chem. C 112 (2008) 14595.
Kale,
[40] T.S. Kang, K.H. Chun, J.S. Hong, S.H. Moon, K. Kim, J. Electrochem. Soc.
147 (2000) 3049.