C O M M U N I C A T I O N S
Table 2. Addition of R2′Zn to 5-(Dihydroindenylidene) Meldrum’s
Acids
Acknowledgment. This work was supported by NSERC, CFI,
OIT, and the University of Waterloo. We gratefully acknowledge
Boehringer Ingelheim (Canada) Ltd. (Young Investigator Award
to E.F.), and AstraZeneca Canada Inc. (AstraZeneca Award to E.F.)
for unrestricted support of this research. A.W. is indebted to NSERC
for a CGS-M scholarship.
Supporting Information Available: Experimental procedures and
NMR spectra. This material is available free of charge via the Internet
entry
R
R
′
conv. (%)a
yield (%)
ee (%)b
1
2
3
4
5
H (4a)
Cl (4b)
Cl (4b)
Cl (4b)
Cl (4b)
Et (5a)
Et (5b)
Me (5c)
n-Bu (5d)
i-Pr (5e)
>99
>99
>99c
>99
>99
96
94
98
97
99
96
99
99
97
57
References
(1) For reviews, see: (a) Feringa, B. L.; Naasz, R.; Imbos, R.; Arnold, L. A.
In Modern Organocopper Chemistry; Krause, N., Ed.; Wiley-VCH:
Weinheim, Germany, 2002; pp 224-258. (b) Alexakis, A.; Benhaim, C.
Eur. J. Org. Chem. 2002, 67, 3221-3236. (c) Krause, N.; Hoffmann-
Ro¨der, A. Synthesis 2001, 171-196. (d) Sibi, M. P.; Manyem, S.
Tetrahedron 2000, 56, 8033-8061.
(2) For an overview on catalytic asymmetric synthesis of all-carbon quaternary
carbon centers, see: Douglas, C. J.; Overman, L. E. Proc. Natl. Acad.
Sci. U.S.A. 2004, 101, 5363-5367.
a Determined by analysis of the crude H NMR spectra. b Measured by
HPLC using a Chiralcel OD, OD-H, or AD-H column. c Five equivalents
of Me2Zn were used.
1
(3) Enantioselective Michael additions in which the Michael donor is
transformed into an all-carbon benzylic quaternary stereocenter: (a) Li,
H.; Song, J.; Liu, X.; Deng, L. J. Am. Chem. Soc. 2005, 127, 8948-
8949. (b) Taylor, M. S.; Zalatan, D. N.; Lerchner, A. M.; Jacobsen, E. N.
J. Am. Chem. Soc. 2005, 127, 1313-1317. (c) Taylor, M. S.; Jacobsen,
E. N. J. Am. Chem. Soc. 2003, 125, 11204-11205.
Scheme 2
(4) d’Augustin, M.; Palais, L.; Alexakis, A. Angew. Chem., Int. Ed. 2005,
44, 1376-1378.
(5) (a) Wu, J.; Mampreian, D. M.; Hoveyda, A. H. J. Am. Chem. Soc. 2005,
127, 4584-4585. (b) After the submission of this manuscript, the synthesis
of all-carbon quaternary centers through catalytic 1,4-additions of dialky-
lzinc reagents to 2,3-disubstituted enones was reported: Hird, A. W.;
Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 14988-14989.
(6) (a) Vogt, P. F.; Molino, B. F.; Robichaud, A. J. Synth. Commun. 2001,
31, 679-684. (b) Davies, A. P.; Egan, T. J.; Orchard, M. G.; Cunningham,
D.; McArdle, P. Tetrahedron 1992, 48, 8725-8738. (c) Fleming, I.;
Moses, R. C.; Tercel, M.; Ziv, J. J. Chem. Soc., Perkin Trans. 1 1991,
617-626. (d) Huang, X.; Chan, C.-C.; Wu, Q.-L. Synth. React. Inorg.
Met.-Org. Chem. 1982, 12, 549-556. (e) Huang, X.; Chan, C.-C.; Wu,
Q.-L. Tetrahedron Lett. 1982, 23, 75-76.
(7) Fillion, E.; Fishlock, D. J. Am. Chem. Soc. 2005, 127, 13144-13145.
(8) Asymmetric synthesis of tertiary carbon centers from alkylidene Meldrum’s
acids and dialkylzinc reagents: (a) Kno¨pfel, T. F.; Zarotti, P.; Ichikawa,
T.; Carreira, E. M. J. Am. Chem. Soc. 2005, 127, 9682-9683. (b)
Watanabe, T.; Kno¨pfel, T. F.; Carreira, E. M. Org. Lett. 2003, 5, 4557-
4558.
(9) (a) Chen, B.-C. Heterocycles 1991, 32, 529-597. (b) Strozhev, M. F.;
Lielbriedis, I. EÄ .; Neiland, O. Ya. Khim. Geterotsikl. Soedin. 1991, 579-
599. (c) McNab, H. Chem. Soc. ReV. 1978, 7, 345-358.
(10) (a) Fillion, E.; Fishlock, D.; Wilsily, A.; Goll, J. M. J. Org. Chem. 2005,
70, 1316-1327. (b) Fillion, E.; Fishlock, D. Org. Lett. 2003, 5, 4653-
4656.
(11) (a) Feringa, B. L. Acc. Chem. Res. 2000, 33, 346-353. (b) Feringa, B.
L.; Pineschi, M.; Arnold, L. A.; Imbos, R.; de Vries, A. H. M. Angew.
Chem., Int. Ed. Engl. 1997, 36, 2620-2623.
(12) Typically, Rf values of the product and starting material were comparable,
thus the need for high % conversion to simplify purification.
(13) Meldrum’s acid 2a was formed in 86% yield (96% conversion) and 85%
ee when 1a was reacted with 2 equiv of Et2Zn, 6 mol % of 3, and 3 mol
% of Cu(OTf)2 in DME. Solvents typically used in Cu-catalyzed
enantioselective conjugate additions, such as Et2O (91%, 59% ee), THF
(59%, 63% ee), and toluene (99%, 57% ee), were inferior. MTBE (62%,
53% ee) and 1,4-dioxane (21%, 36% ee) also furnished poor results.
(14) Comparable results were obtained with 5 mol % of Cu(OAc)2‚H2O (90%,
88% ee), Cu(acac)2‚H2O (91%, 88% ee), and Cu(O2CCF3)2‚H2O (99%,
88% ee), but CuCN gave 1a in 80% yield and 48% ee.
trajectory for alkyl delivery, resulting in a lack of reactivity for
1o, 1p, and 1q.
Increasing the length of the alkyl chain on the electrophilic carbon
of the olefin acceptor did not affect enantioselectivity, as illustrated
with pentylidene Meldrum’s acid 1r that furnished the addition
product 2r in 94% ee (entry 18). Sterically demanding substrate
1s was unreactive toward Et2Zn (entry 19). On the other hand, i-Pr2-
Zn added efficiently to 1f, albeit with a modest 65% ee (entry 20).
Meldrum’s acid 1t displayed sluggish reactivity with Me2Zn (entry
21), but the addition of n-Bu2Zn to 1f afforded 2u in 87% yield
and 87% ee (entry 22).
The asymmetric synthesis of 1,1-disubstituted chiral indanes 5
from Meldrum’s acid derivatives 4 was also tackled (Table 2).16
In all cases, conversion was >99%. As for substrates 1, the
introduction of a chloride group in 4 para (5-position) to the benzylic
electrophilic site enhanced enantioselection (entries 1 and 2). A
variety of dialkylzinc reagents (Et2Zn, Me2Zn, n-Bu2Zn) added to
4b with equal enantioselectivity (97-99%) and efficiency (94-
99%) (entries 2-4), with the exception of i-Pr2Zn, which gave 5e
in 57% ee (entry 5).
The synthetic utility of benzyl Meldrum’s acids 2 was exempli-
fied, and the absolute stereochemistry of the addition products was
determined, by preparing known compounds 6 and 7 (Scheme 2).
Using a protocol previously developed in our group,10 2a was
transformed into (R)-3-ethyl-3-methyl-1-indanone (6).17 Hydrolysis
of 2a led to â,â-disubstituted pentanoic acid 7.
In conclusion, we have described the first highly enantioselective
synthesis of all-carbon benzylic quaternary stereocenters via
conjugate addition of dialkylzinc reagents to readily accessible 5-(1-
arylalkylidene) and 5-(dihydroindenylidene) Meldrum’s acids 1 and
4. This method employs commercially available ligand 3 and
dialkylzinc reagents. The significance of substituting the position
para, meta, and ortho to the electrophilic benzylic center was
highlighted. Current efforts are centered at broadening the scope
of enantioselective conjugate additions to 5-alkylidene Meldrum’s
acids.
(15) Adding various amounts of Zn(OTf)2 to the reaction mixture showed no
effect on either the enantioselectivity or the rate of the reaction; see ref
1b.
(16) Catalytic asymmetric synthesis of 1-substituted indanes: (a) Arp, F. O.;
Fu, G. C. J. Am. Chem. Soc. 2005, 127, 10482-10483. (b) Troutman, M.
V.; Apella, D. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 4916-
4917. Pd-catalyzed synthesis of 1-ethyl-1-methylindanes: (c) Fillion, E.;
Carson, R. J.; Tre´panier, V. E.; Goll, J. M.; Remorova, A. A. J. Am. Chem.
Soc. 2004, 126, 15354-15355. For reviews on the synthesis of indanes,
see: (d) Ferraz, H. M. C.; Aguilar, A. M.; Silva, L. F., Jr.; Craveiro, M.
V. Quim. NoVa 2005, 28, 703-712. (e) Hong, B.; Sarshar, S. Org. Prep.
Proc. Int. 1999, 31, 1-86.
(17) Hill, R. K.; Newkome, G. R. Tetrahedron 1969, 25, 1249-1260.
JA056692E
9
J. AM. CHEM. SOC. VOL. 128, NO. 9, 2006 2775