C O M M U N I C A T I O N S
Figure 2. (a) ORTEP plot of 3‚2CH2Cl2 (thermal ellipsoid ) 50%). All H atoms, solvent and anions are not shown. (b) Compound 3 viewed along c-axis.
All phenyl rings are not shown. (c) Diagram showing the AgAu4Cl4 dodecahedron; the solid lines indicate bonding interactions and the broken lines show
the faces of the dodecahedron.
too long for aurophilic interactions. The Au-X bonds (X ) Cl,
2.313(2) Å; ) Br, 2.4171(1) Å) are basically unaffected by the
Ag-X coordination as they are only slightly longer than the
corresponding ones in 1 (2.2975(2) Å) and 2 (2.3924(7) Å). As
the coordinated halides are known as poor electron donors and AgI
ion as a strong electron acceptor, the halonium ions can be regarded
as strong Lewis acid and weak Lewis base adducts.10 While the
Au-P bonds of 3 and 4 (2.241(2) Å) have the same length, the
Au-X and Ag-X bonds are elongated significantly as X is changed
from Cl to Br (Au-Cl ) 2.313(2) Å, Au-Br ) 2.4171(1) Å, Ag-
Cl ) 2.624(2) Å, Ag-Br ) 2.7137(1) Å). Surprisingly the Au-
Ag distance does not show a proportional increase: the unusually
acute Au-Cl-Ag angle of 81.08(7)° leads to the Au-Ag separation
of 3.2180(4) Å in 3, and further compressed Au-Br-Au of 79.04-
(4)° in 4 keeps a very similar Au-Ag of 3.2701(5) Å. Notably,
phopshines and anions on the structures and stability of the
halonium cations are now underway in our laboratory.
Acknowledgment. We thank the National University of Sin-
gapore for financial support.
Supporting Information Available: Experimental procedures and
X-ray crystal structures of 2‚Et2O and 4‚2CH2Cl2 (PDF). Crystal data
and CIF files of 1‚1/2Et2O, 2‚Et2O, 3‚2CH2Cl2, and 4‚2CH2Cl2. This
References
(1) (a) Posey, F. A.; Taube, H. J. Am. Chem. Soc. 1957, 79, 55. (b) Sargeson,
A. M. Aust. J. Chem. 1964, 17, 385. (c) Peone, J., Jr.; Vaska, L. Angew.
Chem., Int. Ed. Engl. 1971, 10, 511. (d) Uso´n, R.; Fornie´s, J.; Espinet,
P.; Navarro, R. J. Organomet. Chem. 1976, 112, 105.
(2) Malatesta, L.; Naldini, L.; Simonetta, G.; Cariati, F. Coord. Chem. ReV.
1966, 1, 255.
exceedingly small Pt-X-Ag angles are observed in {[(C6F5)2Pt-
(3) (a) Schmidbaur, H. Chem. Soc. ReV. 1995, 24, 391. (b) Schmidbaur, H.;
Hofreiter, S.; Paul, M. Nature 1995, 377, 503. (c) Schmidbaur, H.; Zeller,
E.; Weidenhiller, G.; Steigelmann, O.; Beruda, H. Inorg. Chem. 1992,
31, 2370. (d) Canales, F.; Gimeno, M. C.; Jones, P. J.; Laguna, A. Angew.
Chem., Int. Ed. Engl. 1994, 33, 769.
2-
(µ-Cl)2Ag]}2
(65.9(2)°)7a and [(L)Pt(µ-Br)Ag(PPh3)] (L )
(Ph3P)(C6C15)Br) (70.6(1)°)7b which are crucial in fostering Pt-
Ag bonding. It is therefore believed that AuI-AgI metallophilic
interactions may play a role in stabilizing the halonium complexes.
Closed-shell interactions are responsible for the assembling of heavy
d10 metal complexes in solid state.11 Although the Au-Ag distances
in 3 and 4 are on the long end of the reported AuI-AgI bond
distance (2.8-3.3 Å),12 they are shorter than the sum of the van
der Waals radii of the metals (3.4 Å)13 and lie within the range of
Au-Ag bond distances proposed by theoretical calculations.12e
Another structural feature lending support to the existence of Au-
Ag interactions is the bending of the P-Au-X units towardthe
central AgI ion, illustrated by the fact that the P-Au-X angle in
the halonium ions (X ) Cl, 174.98(5)°; ) Br, 173.60(9)° are smaller
than the corresponding ones in the 1 (177.65(6)°) and 2 (177.43-
(4)°)
(4) (a) Uso´n, R.; Laguna, A.; Castrillo, M. V. Synth. React. Inorg. Metalorg.
Chem. 1979, 9, 317. (b) Jones, P. G.; Sheldrick, G. M.; Uso´n, R.; Laguna,
A. Acta Crystallogr., Sect. B 1980, 36, 1486.
(5) (a) Bayler, A.; Bauer, A.; Schmidbaur, H. Chem. Ber. Recl. 1997, 130,
115. (b) Schmidbaur, H.; Hamel, A.; Mitzel, N. W.; Schier, A.; Nogai, S.
Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4916. (c) Hamel, A.; Mitzel, N.
W.; Schmidbaur, H. J. Am. Chem. Soc. 2001, 123, 5106.
(6) (a) Teo, B. K.; Zhang, H.; Shi, X. J. Am. Chem. Soc. 1990, 112, 8552.
(b) Copley, R. C. B.; Mingos, M. P. D. J. Chem. Soc., Dalton Trans.
1992, 1755. (c) Douglas, G.; Jennings, M. C.; Manojlovic´-Muir, L.;
Puddephatt, R. J. Inorg. Chem. 1988, 27, 4516. (d) Krogstad, D. A.;
Young, V. G.; Pignolet, L. H. Inorg. Chim. Acta 1997, 264, 19.
(7) (a) Uso´n, R.; Fornie´s, J.; Menjo´n, B.; Cotton, F. A.; Falvello, L. R.; Toma´s,
M. Inorg. Chem. 1985, 24, 4651. (b) Uso´n, R.; Fornie´s, J.; Toma´s, M.;
Ara, I. Inorg. Chim. Acta 1991, 186, 67. (c) Uso´n, R.; Fornie´s, J. Inorg.
Chim. Acta 1992, 198-200, 165 and references therein.
(8) Yip, J. H. K.; Prabhavathy, J. Angew. Chem., Int. Ed. 2001, 40, 2159.
(9) Hunter, C. A.; Sanders, J. K. M. J. Am. Chem. Soc. 1990, 112, 5525.
(10) (a) Tschinkl, M.; Bachman, R. E.; Gabba¨ı, F. P. Organometallics 2000,
19, 2633. (b) King, J. B.; Tsunoda, M.; Gabba¨ı, F. P. Organometallics
2002, 21, 4201.
On the basis of these structural features, the halonium cations
are believed to be stabilized by the collective actions of Ag-X
and Au-Ag and π-π interactions. This could be the reason the
formation of the halonium cations is favored over that of halide
abstraction. The robustness of the polymers is suggested by the
insolubility of 3 and 4 in most of the organic solvents except
DMSO. The 31P{1H} NMR spectra of 3 and 4 measured in DMSO-
d6, which show a singlet at δ 26.85 and 28.82, respectively, are
identical to those of 1 and 2. In addition, the halide abstraction
could be disfavored by the low AgI/X ratio of 1/4 in the reactions
as the Lewis acidity of AgI ion is expected to be attenuated by the
coordination of four halide ions. Investigations of the effect of
(11) (a) Hunks, W. J.; Jennings, M. C.; Puddephatt, R. J. Inorg. Chem. 2002,
41, 4590. (b) White-Morris, R. L.; Olmstead, M. M.; Balch, A. L. J. Am.
Chem. Soc. 2003, 125, 1033.(c) Mathieson, T.; Schier, A.; Schmidbaur,
H. J. Chem. Soc., Dalton Trans. 2000, 3881.
(12) (a) Uso´n, R.; Laguna, A.; Laguna, M. J. Chem. Soc., Chem. Commun.
1981, 1097. (b) Olmos, M. E.; Schier, A.; Schmidbaur, H. Z. Naturforsch.
B 1997, 52, 203. (c) Ferna´ndez, E. J.; Lo´pez-de-Luzuriaga, J. M.; Monge,
M.; Rodr´ıguez, M. A.; Crespo, O.; Gimeno, M. C.; Laguna, A.; Jones, P.
G. Chem. Eur. J. 2000, 6, 636. (d) Burini, A.; Fackler, J. P., Jr.; Galassi,
R.; Pietroni, B. R.; Staples, R. J. J. Chem. Soc., Chem. Commun. 1998,
95. (e) Ferna´ndez, E. J.; Laguna, A.; Lo´pez-de-Luzuriaga, J. M.; Monge,
M.; Pyykko¨, P.; Runeberg, N. Eur. J. Inorg. Chem. 2002, 750. (f) Sladek,
A.; Schmidbaur, H. Z. Naturforsch. 1997, 52b, 301.
(13) Bondi, A. J. Phys. Chem. 1964, 68, 441.
JA035064Z
9
J. AM. CHEM. SOC. VOL. 125, NO. 28, 2003 8453