1498 J ournal of Natural Products, 1999, Vol. 62, No. 11
Patthy-Luka´ts et al.
3
3
HETLOCK spectrum15): J C15,H3 ) +3.2, J C3,H15 ) +5.5,
CO); 17.1 (C-6); a, b, c, revised assignment is also possible.
NOESY cross-peaks (s, strong; m, medium; w, weak; v, very
weak): H-1, H-3 w, H-12 w, H-15 w; H-3, H-14proR w,
H-14proS v, H-15 w, H-18Z w, H-20 m, H-2′ m, Hb-benzyl-
CH2 m; H-5R, H-5â s, H-6R v, H-14proS v, H-15 v; H-5â, H-5R
s, H-6â v, Ha-benzyl-CH2 w; H-6R, H-5R v, H-6â s, H-9 w; H-6â,
H-5â v, H-6R s, H-9 v, Ha-benzyl-CH2 v, Hb-benzyl-CH2 v; H-9,
H-6R w, H-6â v, H-10 s; H-10, H-9 s; H-11, H-12 s; H-12, H-1
w, H-11 s; H-14proR, H-3 v, H-14proS s, H-15 v, H-19 w;
H-14proS, H-3 v, H-5R v, H-14proR s, H-15 w; H-15, H-3 w,
H-5R v, H-14proR v, H-14proS w, H-20 s, H-2′′ m; H-18E,
H-18Z s, H-19 s; H-18Z, H-18E s, H-19 w, H-20 s; H-19,
H-14proR w, H-18E s, H-18Z w, H-20 v; H-20, H-3 m, H-15 s,
H-18Z s, H-19 v, H-21 s, H-2′′ w; H-21, H-20 s, H-1′ m; Ha-
benzyl-CH2, H-5â w, H-6â w, Hb-benzyl-CH2 s, 2′′-H m; Hb-
benzyl-CH2, H-3 m, H-6â v, Ha-benzyl-CH2 s, H-2′′ m.
3J C20,H18Z ) +6.3, J C20,H18E ) +11.6, J C20,H21 ) +0.3, J C15,H19
3
2
3
2
2
2
) +5.1, J C20,H15 ) -7.1, J C15,H20 ) -3.5, J C15,H14S ) -5.0,
2J C3,H14S ) -2.6, J C3,H14R ) -6.0, J C14,H3 ) -4.0, J C14,H15
)
2
2
2
-5.3. The cross-peak intensities of the NOESY spectrum were
obtained from volume integration by the XWINNMR program.
The intensity of the NOE interaction corresponding to 3.3 Å
distance of two hydrogens were calculated by the two inde-
pendent spin approximation from the known 2.5 Å distance
of H-1′ and H-5′ hydrogens and from the measured cross-peak
intensity of this interaction. NOEs larger and smaller than
the calculated value are denoted as strong (s) and weak (w),
respectively. List of NOESY cross-peaks: H-1, H-3 s, H-12 w,
H-14proS w, H-15 s; H-3, H-14proS s, H-14proR w, H-15 s,
H-20 w, Ha-benzyl-CH2 s, Hb-benzyl-CH2 w; H-5R, H-5â s,
H-6â w, Hb-benzyl-CH2 s; H-5â, H-5R s, H-6â s, H-14proR s;
H-6R, H-6â s, H-9 w, Ha-benzyl-CH2 w, Hb-benzyl-CH2 s; H-6â,
H-5â s, H-6R s, H-9 w; H-9, H-6R w, H-6â w, H-10 s; H-14proR,
H-3 w, H-5â s, H-14proS s, H-15 w, H-20 w; H-14proS, H-3 s,
H-14proR s, H-15 w; H-15, H-1 s, H-3 s, H-14proR w, H-14proS
w, H-20 s, H-2′′ w, Ha-benzyl-CH2 w; H-18E, H-18Z s, H-19 s;
H-18Z, H-18E s, H-20 s; H-19, H-18E s, H-20 w; H-20, H-3 w,
H-14proR w, H-15 s, H-18Z s, H-19 w, H-21 s; H-21, H-20 s,
H-18Z w; Ha-benzyl-CH2, H-3 s, H-6R w, H-15 w, Hb-benzyl-
CH2 s, H-2′′ 2.6 s; Hb-benzyl-CH2, H-5R 2.3 s, H-6R 2.3 s, Ha-
benzyl-CH2 s, H-2′′ s.
O′,O′,O′,O′-Tetr a a cetyl-18,19-d ih yd r ovin cosa m id e (4b)
P r ep a r ed fr om 3d . O′,O′,O′,O′-Tetraacetyl-4-(4′′-bromoben-
zyl)vincoside (3d , 0.43 g, 0.5 mmol) was dissolved in absolute
MeOH (10.0 mL) and hydrogenated in the presence of 10%
Pd on charcoal at room temperature for 30 min, then the
catalyst was filtered, and the solution stirred for 2 h. After
evaporation of the solvent O′,O′,O′,O′-tetraacetyl-18,19-dihy-
drovincosamide (4b) was obtained as a pale yellow amorphous
solid (0.28 g, 84%, Rf 0.84); anal. C 60.61%, H 5.85%, N 4.02%,
calcd for C34H40N2O12, C 61.05%, H 6.03%, N 4.19%; 1H NMR
3
(CDCl3, 400 MHz) δ 8.00 (1H, br s, H-1), 7.51 (1H, dd, J 9,10
)
O′,O′,O′,O′-Tet r a a cet yl-4-(4′′-b r om ob en zyl)vin cosid e
(3d ). Nb-4′-bromobenzyltryptaminium chloride (1b‚HCl, 0.25
g, 0.06 mmol) was dissolved in H2O (3.0 mL) and, after the
addition of 5% aqueous Na2CO3 solution (1 mL), was extracted
with CHCl3 (3 × 3.0 mL). The combined CHCl3 solution was
washed with H2O (2 × 3 mL), dried, and the solvent evapo-
rated. The residue was taken up in C6H6 (5.0 mL), O,O,O,O-
tetraacetylsecologanin (2b, 0.34 g, 0.6 mmol) was added, and
the reaction mixture refluxed for 3 h. The solvent was
evaporated, and the residue crystallized from MeOH-H2O
(1:1, 1.5 mL). O′,O′,O′,O′-Tetraacetyl-4-(4′′-bromobenzyl)vin-
coside (3d ) was obtained as colorless crystals (0.48 g, 91%, Rf
4
4
7.5, J 9,11 ) 1.2 Hz, H-9), 7.42 (1H, d, J 15,17 ) 2.5 Hz, H-17),
3
4
7.34 (1H, dd, J 11,12 ) 8.0, J 10,12 ) 1.2 Hz, H-12), 7.19 (1H,
ddd, 3J 11,12 ) 8.0, 3J 10,11 ) 7.5, 4J 9,11 ) 1.2, Hz, H-11), 7.12 (1H,
3J 10,11 ) td, 7.5, J 9,10 ) 7.5, J 10,12 ) 1.2 Hz, H-10), 5.40 (1H,
3
4
3
3
3
d, J 20,21 ) 1.9 Hz, H-21), 5.26 (1H, t, J 2′,3′ ) J 3′,4′ ) 9.8 Hz,
3
3
H-3′), 5.14 (1H, m, H-5R), 5.10 (1H, t, J 3′,4′ ) J 4′,5′ ) 9.8 Hz,
H-4′), 5.02 (1H, dd, 3J 1′,2′ ) 8.0, 3J 2′,3′ ) 9.8 Hz, H-2′), 4.93 (1H,
d, 3J 1′,2′ ) 8.0 Hz, H-1′), 4.83 (1H, m H-3), 4.34 (1H, dd, 3J 6′a,6′b
3
3
) 12.6, J 5′,6′a ) 3.9 Hz; H-6′a), 4.15 (1H, dd, J 6′a,6′b ) 12.6,
3J 5′,6′b ) 2.0 Hz, H-6′b), 3.78 (1H, ddd, J 4′,5′ ) 9,8, J 5′,6′a
)
3
3
3.9, 3J 5′,6′b ) 2.0 Hz, H-5′), 2.96 (1H, dddd, 3J 14S,15 ) 13.0, 3J 15,20
) 6.2, 3J 14R,15 ) 3.5, 4J 15,17 ) 2.5 Hz, H-15), 2.88 (1H, m, H-5â),
25
0.86, mp 159-160 °C, [R]D -63° (c 0.1, MeOH); IR (KBr),
2
3
3
cm-1: 1715, 1680 (νCdO); anal. C 57.53%, H 5.35%, N 3.17%,
Br 9.15%, calcd for C42H47N2O13Br, C 58.11%, H 5.46% N
3.23%, Br 9.21%; 1H NMR (CDCl3, 400 MHz) δ 8.10 (1H, br s,
2.80 (2H, H2-6), 2.23 (1H, dt, J 14R,14S ) 12.7, J 3,14R ) J 14R,15
) 3.6 Hz, H-14proR), 2.11, 2.04, 2.02, 1,98 (each 3H, s, CH3-
3
3
3
CO),1.90 (1H, dddd, J 19b,20 ) 9.8, J 15,20 ) 6.2, J 19a,20 ) 5.0,
3J 20,21 ) 1.9 Hz, H-20), 1.66 (1H, q, J 14R,14S ) 3J 3,14S ) 3J 14S,15
2
3
4
H-1), 7.51 (1H, dd, J 9,10 ) 8.3, J 9,11 ) 1.4 Hz, H-9), 7.49 (2H,
2
3
d, J 2′′,3′′ Hz ) 3J 5′′,6′′ ) 8.4 Hz, H-3′′,5′′), 7.32 (1H, dd, J 11,12
)
3
3
) 12.7 Hz, H-14proS), 1.36 (1H, dqd, J 19a,19b ) 14.3, J 18,19
)
3
2
7.9, 4J 10,12 ) 1.2 Hz, H-12), 7.31 (1H, d, 4J 15,17 ) 1.4 Hz, H-17),
7.5, J 19a,20 ) 5.0 Hz, H-19a), 1.13 (1H, ddq, J 19a,19b ) 14.3;
3J 19b,20 ) 9.8; 3J 18,19 ) 7.5 Hz, H-19b), 0.95 (3H, t, J 18,19 ) 7.5
3
3
3
7.24 (2H, d, J 2′′,3′′ Hz ) J 5′′,6′′ ) 8.4 Hz, H-2′′,6′′), 7.14 (1H,
Hz, H-18). Further 1H coupling constants determined in
ddd, 3J 11,12 ) 7.9, 3J 10,11 ) 7.1, 4J 9,11 ) 1.4 Hz, H-11), 7.10 (1H,
5
2
3
3
3
3
4
C6D6: J 3,6R ) 2.3, J 5R,5â ) 12.3, J 5R,6R ) 4.8, J 5R,6â ) 1.3,
3J 5â,6R ) 12,3, 3J 5â,6â ) 3.3, 2J 6R,6â ) 14.5 Hz; 13C NMR (CDCl3,
100 MHz) δ 170,6, 169.9, 169.8, 169.5 (each CH3CO), 163.3 (s,
C-22), 146.7 (d, C-17), 136.4 (s, C-13), 132.9 (s, C-2), 126.7 (s,
C-8), 122.1 (d, C-11), 119.7 (d, C-10), 118.3 (d, C-9), 111.0 (d,
C-12), 109.4 (s, C-16), 108.6 (s, C-7), 95.9 (d, C-21), 95.0 (d,
C-1′), 72.3 (d, C-3′), 72.1 (d, C-5′), 70.6 (d, C-2′), 68.3 (d, C-4′),
61.8 (t, C-6′), 53.2 (d, C-3), 39.5 (t, (C-5), 38.0 (d, C-20), 31.1
(t, C-14), 27.4 (d, C-15), 21.0 (t, C-6), 20.7-20.5 (CH3CO), 17.6
(t, C-19), 11.9 (q, C-18); NOESY cross-peaks H-3, H-14proR
w, H-15 w; H-5R, H-5â s, H-6R w; H-5â, H-5R s, H-6â w; H-6R,
H-5R w, H-6â s; H-6â, H-5â w, H-6Rs; H-14proR, H-3 w,
H-14proS s; H-14proS, H-14proR s; H-15, H-3 w, H-20 m; H3-
18, H-21 s, H2-19 m; H2-19, H3-18 m, H-20 m; H-20, H-15 m,
H2-19 m, H-21 m; H-21, H3-18 s, H-20 m, H-1′ m.
O′,O′,O′,O′-Tetr a a cetyl-18,19-d ih yd r ovin cosa m id e (4b)
P r ep a r ed fr om Vin cosa m id e (4a ). In a mixture of absolute
pyridine (2.0 mL) and (Ac)2O (0.8 mL, 8.0 mmol) vincosamide
(4a , 0.25 g, 0.4 mmol) was stirred at room temperature for 2
h, the reaction mixture was poured on to ice (5.0 g), and
extracted with EtOAc (3 × 10 mL). The organic layer was
washed with 5% aqueous Na2CO3 solution (2 × 10 mL) and
H2O (10 mL), dried with anhydrous Na2SO4, and the solvent
evaporated. The O′,O′,O′,O′-tetraacetylvincosamide (4c ) 4,
R ) acetyl, X ) vinyl) was obtained as a pale yellow powder
(0.26 g, single spot, Rf 0.86) and was used immediately.
O′,O′,O′,O′-Tetraacetylvincosamide (4c) was dissolved in
absolute methanol (3.0 mL) and hydrogenated in the presence
ddd, J 9,10 ) 8.3, J 10,11 ) 7.1, J 9,11 ) 1.4 Hz, H-10), 5.53 (1H,
ddd, 3J 18Z,19 ) 17.2, 3J 18E,19 ) 10.2, 3J 19,20 ) 9.5 Hz, H-19), 5.30-
3
2
5.08 (3H, m, H-2′,3′,4′), 5.18 (1H, dd, J 18E,19 ) 10.2, J 18E,18Z
3
) 1.8 Hz, H-18E), 5.16 (1H, d, J 20,21 ) 4.0 Hz, H-21), 4.88
3
3
(1H, d, J 1′,2′ ) 8.1 Hz, H-1′), 4.86 (1H, dd, J 18Z,19 ) 17.2,
2J 18E,18Z ) 1.8 Hz, H-18Z), 4.35 (1H, dd, J 6′a,6′b ) 12.4, J 5′,6′a
2
3
2
3
) 4.1 Hz, H-6′a), 4.24 (1H, dd, J 6′a,6′b ) 12.4, J 5′,6′b ) 2.3 Hz,
2
H-6′b), 3.76 (1H, m, H-5′), 3.76 (1H, d, J NCHa,NCHb ) 13.1 Hz,
2
Ha-benzyl-CH2), 3.61 (3H, s, OCH3), 3.59 (1H, J NCHa,NCHb
)
)
3
3
13.1 Hz, Hb-benzyl-CH2), 3.48 (1H, dd, J 3,14S ) 9.4, J 3,14R
5.5 Hz, H-3), 3.41 (1H, ddd, 2J 5R,5â ) 13.7, 3J 5R,6â ) 11.8, 3J 5R,6R
2
3
) 4.8 Hz, H-5R), 3.16 (1H, ddd, J 5R,5â ) 13.7, J 5â,6â ) 5.7,
3J 5â,6R ) 1.0 Hz, H-5â), 3.06 (1H, dtd, J 14R,15 ) 9.5, J 14S,15
)
)
3
3
3J 15,20 ) 5.3, J 15,17 ) 1.4 Hz, H-15), 2.96 (1H, ddd, J 6R,6â
4
2
16.2, 3J 5R,6â ) 11.8, 3J 5â,6â ) 5.7 Hz, H-6â), 2.57 (1H, ddd, 2J 6R,6â
3
3
) 16.2, J 5R,6R, ) 4.8, J 5â,6R ) 1.0 Hz, H-6R), 2.30 (1H, ddd,
2J 14R14S ) 14.3, 3J 14R,15 ) 9.5 Hz, 3J 3,14R ) 5.5, H-14proR), 2.12,
3
2.05, 2.04, 1.96 (each 3H, s, CH3CO), 2.00 (1H, ddd, J 19,20
)
9.5, 3J 15,20 ) 5.3, 3J 20,21 ) 4.0 Hz, H-20), 1.52 (1H, ddd, 2J 14R14S
) 14.3, J 3,14S ) 9.4, J 14S,15 ) 5.3 Hz, H-14proS); 13C NMR
(CDCl3, 100 MHz) δ 170.8, 170.2, 169.4, 169.1 (each CH3CO),
167.4 (C-22), 150.7 (C-17), 138.9 (C-1′′), 135.7 (C-13), 134.8 (C-
2), 133.7 (C-19), 131.4c (C-3′′,5′′), 131.3c (C-2′′,6′′), 127.4 (C-
8), 121.3 (C-11), 120.8 (C-4′′), 119.6 (C-18), 119.2 (C-10), 118.0
(C-9), 111.7 (C-16), 110.8 (C-12), 106.8 (C-7), 96.2 (C-21), 95.8
(C-1′), 72.5b (C-3′), 72.1b (C-5′), 70.7 (C-2′), 68.2 (C-4′), 61.7
(C-6′), 56.4 (CH2), 51.3a (OCH3), 51.2a (C-3), 44.3 (C-5), 42.4
(C-20), 33.8 (C-14), 26.4 (C-15), 20.8, 20.6, 20.5, 20.2 (each CH3-
3
3