Scheme 2. Synthesis of trans-DL-cyclopentane-1,2-diylbis(pyrazolidin-1-ylmethanone) 16.
Dr. M. C. A. Dancel (University of Florida) for HRMS
analyses.
The ability of proline to form cis-peptide bonds and undergo cis-
trans isomerization has been well-studied.6 The conformations
17
of poly-proline peptides have been calculated16,
and it was
References and notes
suggested that the trans-cis conversion of poly-proline chain may
occur not only at the terminus but also in the middle of the
1. Du, A. W.; Stenzel, M. H. Biomacromolecules 2014, 15, 1097.
2. Albericio, F.; Kruger, H. G. Future Med. Chem. 2012, 4, 1527.
3. Georgiades, J. A.; Schroeder-Georgiades, I. M. In Role of proline
rich peptides in cellular communication mechanisms and treatment
of diseases; Google Patents, 2011.
19
chain.18,
X-ray analysis of several aza-proline containing
peptides revealed that because of steric hindrance, both nitrogen
atoms are not co-planar. Reduced electronic conjugation in the
two aza-Pro adjacent amide groups explains the longer amide
bond distances and the weak proton-accepting character of the
two pyrazolidine nitrogens. The absolute configuration of both
aza-Pro-nitrogens depends on the chemical nature of the
sequence but in all cases the aza-Pro residue assumes the same
three-dimensional structure and causes folding opposite to that
induced by proline.20
4. Ostrov, D. A.; Shi, W.; Schwartz, J. C.; Almo, S. C.; Nathenson, S.
G. Science (New York, N.Y.) 2000, 290, 816.
5. International Journal of Peptides 2012, 2012, 14.
6. Trabocchi, A.; Cini, N.; Menchi, G.; Guarna, A. Tetrahedron Lett.
2003, 44, 3489.
7. Rodríguez-Borges, J. E.; Gonçalves, S.; do Vale, M. L.; García-
Mera, X.; Coelho, A.; Sotelo, E. J. Comb. Chem. 2008, 10, 372.
8. Semple, J. E.; Rowley, D. C.; Brunck, T. K.; Ripka, W. C. Bioorg.
Med. Chem. Lett. 1997, 7, 315.
9. Noteberg, D.; Branalt, J.; Kvarnstrom, I.; Linschoten, M.; Musil, D.;
Nystrom, J. E.; Zuccarello, G.; Samuelsson, B. J. Med. Chem. 2000,
43, 1705.
10. Tal-Gan, Y.; Freeman, N. S.; Klein, S.; Levitzki, A.; Gilon, C. Chem.
Biol. Drug Des. 2011, 78, 887.
11. Melendez, R. E.; Lubell, W. D. J. Am. Chem. Soc. 2004, 126, 6759.
12. Freeman, N. S.; Tal-Gan, Y.; Klein, S.; Levitzki, A.; Gilon, C. J.
Org. Chem. 2011, 76, 3078.
13. Wilkinson, D. E.; Thomas Iv, B. E.; Limburg, D. C.; Holmes, A.;
Sauer, H.; Ross, D. T.; Soni, R.; Chen, Y.; Guo, H.; Howorth, P.;
Valentine, H.; Spicer, D.; Fuller, M.; Steiner, J. P.; Hamilton, G. S.;
Wu, Y.-Q. Bioorg. Med.Chem. 2003, 11, 4815.
Table 1. Comparison of calculated physical properties
Property
Trans isomer 16 Triprolyl
Steric energy, kcal/mol
Strain energy, kcal/mol
36.1
23.8
33.2
17.7
88.7
5.46
1.37
Heat of formation, kcal/mol 87.6
Dipole moment, D
Log P (calc.)
3.97
4.43
14. Lecoq, A.; Boussard, G.; Marraud, M.; Aubry, A. Tetrahedron Lett.
1992, 33, 5209.
15. 15 Bouvet, S.; Moreau, X.; Coeffard, V.; Greck, C. J. Org. Chem.
2013, 78, 427.
16. 16 Dasgupta, B.; Chakrabarti, P.; Basu, G. FEBS Lett. 581, 4529.
17. 17 Zhang, W.-J.; Berglund, A.; Kao, J. L. F.; Couty, J.-P.;
Gershengorn, M. C.; Marshall, G. R. J. Am. Chem. Soc. 2003, 125,
1221.
18. 18 Tanaka, S.; Scheraga, H. A. Macromolecules 1974, 7, 698.
19. 19 Zhao, J.; Siu, C.-K.; Shi, T.; Hopkinson, A. C.; Siu, K. W. M. J.
Phys. Chem. B 2009, 113, 4963.
In conclusion, a novel mimetic of L-Pro-L-Pro-L-Pro 16
consisting of two pyrazolidine moieties linked by amide bonds
to a cyclopentane ring in the trans configuration has been
synthesisized in five steps from N,N’-diprotected hydrazine.
Mono N-terminus deprotection of the product followed by
coupling with trans-DL-1,2-cyclopentanedicarboxylic acid and
deprotection of the remaining secondary amino group, resulted
in a di-aza mimic of the tri-proline peptide. Molecular
structures of the original Pro-Pro-Pro tripeptide and the di-aza
mimic were studied using molecular mechanics, and it was
concluded that the non-polar cyclopentane ring of 16 increases
the lipophilicity of the peptidomimetic, while the pyrazolidine
moieties instil conformational constraints that induce turn.
20. 20 AndrÉ, F.; Vicherat, A.; Boussard, G. U. Y.; Aubry, A.;
Marraud, M. J. Pept. Res. 1997, 50, 372.
21. 21 Jablonski, J. J.; Basu, D.; Engel, D. A.; Geysen, H. M. Bioorg.
Med. Chem. 2012, 20, 487.
22. 22 East, S. P.; Ayscough, A.; Toogood-Johnson, I.; Taylor, S.;
Thomas, W. Bioorg. Med. Chem. Lett. 2011, 21, 4032.
23. 23 Brazier, J. B.; Cavill, J. L.; Elliott, R. L.; Evans, G.; Gibbs, T. J.
K.; Jones, I. L.; Platts, J. A.; Tomkinson, N. C. O. Tetrahedron 2009,
65, 9961.
Acknowledgments
Preparation of tert-butyl hydrazinecarboxylate 10: Hydrazine hydrate (113
mg, 2.26 mmol, 2.26 eq.) was dissolved in IPA (5 mL) and cooled down to
0 °C. Di-tert-butyl carbonate (174 mg, 1 mmol, 1 eq.) in IPA (1 mL) was
added drop-wise and the mixture was stirred for 2 hours. The solvent was
then evaporated and the residue was dissolved in DCM, dried over MgSO4,
and filtered. Evaporation of the solvent gave tert-butyl
We thank the University of Florida and the Kenan Foundation
for support with this project. This paper was also funded in
part by generous support from King Abdulaziz University,
under grant No D-006/431. The authors, therefore,
acknowledge the technical and financial support of KAU. The
authors are grateful to Mr. Z. Wang for helpful discussions and
1
hydrazinecarboxylate 10 as a white semi-solid (128 mg, 97 %). H NMR