Journal of the American Chemical Society
Communication
(11) Acker, J.; Bohmhammel, K. Thermodynamic Assessment of the
Copper Catalyzed Direct Synthesis of Methylchlorosilanes. J.
Organomet. Chem. 2008, 693, 2483−2493.
Experimental and computational methods, synthesis of
[BP3iPr]Co(DMAP) and [BP2iPr]Co(H)2(κ2-Si,-
P-iPr2PCH2SiHPh); characterization data; and details
of X-ray crystallography (PDF)
X-ray crystallography structure data (CIF)
Structure model of 2* (XYZ)
(12) Lee, D. C.; Hanrath, T.; Korgel, B. A. The Role of Precursor-
Decomposition Kinetics in Silicon-Nanowire Synthesis in Organic
Solvents. Angew. Chem., Int. Ed. 2005, 44, 3573−3577.
(13) Heitsch, A. T.; Fanfair, D. D.; Tuan, H.; Korgel, B. A.
Solution−Liquid−Solid (SLS) Growth of Silicon Nanowires. J. Am.
Chem. Soc. 2008, 130, 5436−5437.
AUTHOR INFORMATION
Corresponding Author
ORCID
(14) Ramanujam, J.; Shiri, D.; Verma, A. Silicon Nanowire Growth
and Properties: A Review. Mater. Express 2011, 1, 105−126.
(15) Hasan, M.; Huq, M. F.; Mahmood, Z. H. A Review on
Electronic and Optical Properties of Silicon Nanowire and Its
Different Growth Techniques. SpringerPlus 2013, 2, 151−160.
(16) Okamoto, M.; Onodera, S.; Yamamoto, Y. Direct Synthesis of
Organochlorosilanes by the Reaction of Metallic Silicon with
Hydrogen Chloride and Alkene/Alkyne. Chem. Commun. 1998,
1275−1276.
■
Notes
(17) Wanandi, P. W.; Glaser, P. B.; Tilley, T. D. Reactivity of an
Osmium Silylene Complex toward Chlorocarbons: Promotion of
Metal Redox Chemistry by a Silylene Ligand and Relevance to the
Mechanism of the Direct Process. J. Am. Chem. Soc. 2000, 122, 972−
973.
(18) Lewis, L. N.; Whitney, J. M.; Bui, P. Direct Reaction of Silicon
with α−ω Dichloroalkanes: Direct Formation of Dichlorosilacyclo-
pentane. Organometallics 2005, 24, 2141−2146.
(19) Okamoto, M. Intermediacy of Silylene and Germylene in Direct
Synthesis of Organosilanes and Organogermanes. Res. Chem. Intermed.
2006, 32, 317−330.
The authors declare no competing financial interest.
CCDC 1910274−1910279 contain the supplementary crys-
tallographic data for this paper. These data can be obtained
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
ACKNOWLEDGMENTS
■
(20) The activation of an Si(II) source, Br2Si(SIPr), by a molybdate
complex resulting in a MoSiMo core has been reported: Ghana,
P.; Arz, M. I.; Chakraborty, U.; Schnakenburg, G.; Filippou, A. C.
Linearly Two-Coordinated Silicon: Transition Metal Complexes with
the Functional Groups M≡SiM and M = Si = M. J. Am. Chem. Soc.
2018, 140, 7187−7198.
This work was funded by the National Science Foundation
under grant no. CHE-1566538. R.C.H. is grateful to the
NSERC of Canada for a PGS-D fellowship. UC Berkeley
ChexRay is funded by the National Institutes of Health under
grant no. S10-RR027172. We thank Simon J. Teat and Laura J.
McCormick of the Advanced Light Source for their expertise
and assistance. We thank the reviewers for their thoughtful
comments and suggestions. This research used resources of the
Advanced Light Source, which is a DOE Office of Science User
Facility under contract no. DE-AC02-05CH11231.
(21) Note that the Na/Hg reduction of [BP3iPr]CoI under these
conditions has been previously reported to give {[BP3iPr]Co}2(μ-N2).
See: Betley, T. A.; Peters, J. C. Dinitrogen Chemistry from Trigonally
Coordinated Iron and Cobalt Platforms. J. Am. Chem. Soc. 2003, 125,
10782−10783 The synthesis of 1 with the current synthetic protocol
has been reproducible in our hands (see Supporting Information). .
(22) Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The
Cambridge Structural Database. Acta Crystallogr., Sect. B: Struct. Sci.,
Cryst. Eng. Mater. 2016, 72, 171−179.
REFERENCES
■
(1) Waits, R. K. Silicide Resistors for Integrated Circuits. Proc. IEEE
1971, 59, 1425−1429.
(23) Atheaux, I.; Donnadieu, B.; Rodriguez, V.; Sabo-Etienne, S.;
Chaudret, B.; Hussein, K.; Barthelat, J.-C. A Unique Coordination of
SiH4: Isolation, Characterization, and Theoretical Study of
(PR3)2H2Ru(SiH4)RuH2(PR3)2. J. Am. Chem. Soc. 2000, 122,
5664−5665.
(2) Murarka, S. P. Refractory Silicides for Integrated Circuits. J. Vac.
Sci. Technol. 1980, 17, 775−792.
(3) Murarka, S. P. Transition Metal Silicides. Annu. Rev. Mater. Sci.
1983, 13, 117−137.
(4) Reader, A. H.; van Ommen, A. H.; Weijs, P. J. W.; Wolters, R.
A.; Oostra, D. J. Transition Metal Silicides in Silicon Technology. Rep.
Prog. Phys. 1993, 56, 1397−1467.
(24) Said, R. B.; Hussein, K.; Barthelat, J.-C.; Atheaux, I.; Sabo-
Etienne, S.; Grellier, M.; Donnadieu, B.; Chaudret, B. Redistribution
at Silicon by Ruthenium Complexes. Bonding Mode of the Bridging
Silanes in Ru2H4(μ-η2:η2:η2:η2-SiH4)(PCy3)4 and Ru2H2(μ-η2:η2-
H2Si(OMe)2)3(PCy3)2. Dalton Trans 2003, 4139−4146.
(25) Lipke, M. C.; Liberman-Martin, A. L.; Tilley, T. D.
Electrophilic Activation of Silicon-Hydrogen Bonds in Catalytic
Hydrosilations. Angew. Chem., Int. Ed. 2017, 56, 2260−2294.
(26) Lipke, M. C.; Tilley, T. D. High Electrophilicity at Silicon in η3-
Silane σ-Complexes: Lewis Base Adducts of a Silane Ligand, Featuring
Octahedral Silicon and Three Ru−H−Si Interactions. J. Am. Chem.
Soc. 2011, 133, 16374−16377.
(5) Chen, L. J. Metal Silicides: An Integral Part of Microelectronics.
JOM 2005, 57, 24−30.
(6) Averyanov, D. V.; Tokmachev, A. M.; Karateeva, C. G.;
Karateev, I. A.; Lobanovich, E. F.; Prutskov, G. V.; Parfenov, O. E.;
Taldenkov, A. N.; Vasiliev, A. L.; Storchak, V. G. Europium Silicide −
a Prospective Material for Contacts with Silicon. Sci. Rep. 2016, 6,
25980−25989.
(7) Lewis, K. M., Rethwisch, D. G. Catalyzed Direct Reactions of
Silicon; Elsevier: Amsterdam, 1993.
(8) Seyferth, D. Dimethyldichlorosilane and the Direct Synthesis of
Methylchlorosilanes. The Key to the Silicones Industry. Organo-
metallics 2001, 20, 4978−4992.
(27) Waterman, R.; Hayes, P. G.; Tilley, T. D. Synthetic
Development and Chemical Reactivity of Transition-Metal Silylene
Complexes. Acc. Chem. Res. 2007, 40, 712−719.
̈
(9) Schmidt, V.; Wittemann, J. V.; Senz, S.; Gosele, U. Silicon
(28) Okazaki, M.; Tobita, H.; Ogino, H. Reactivity of Silylene
Complexes. Dalton Trans 2003, 493−506.
Nanowires: A Review on Aspects of Their Growth and Their
Electrical Properties. Adv. Mater. 2009, 21, 2681−2702.
(10) Lorey, L.; Roewer, G. The Direct Synthesis of Methylchlor-
osilanes: New Aspects Concerning Its Mechanism. Silicon Chem.
2002, 1, 299−308.
(29) Schmid, G.; Welz, E. Base-Stabilized Silyleneiron Complexes.
Angew. Chem., Int. Ed. Engl. 1977, 16, 785−786.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX