Organic Letters
Letter
Trans. 2 1978, 9, 915−922. (b) Fornier de Violet, P.; Bonneau, R.;
Lapouyade, R.; Koussini, R.; Ware, W. R. Intramolecular Photo-
cyclization of 2-Vinylbiphenyl-Like Compounds. 2. Detection of the
Intermediates and Kinetic Study by Laser Flash Photolysis of 1-(o-
Diphenyl)-1-phenylethylene. J. Am. Chem. Soc. 1978, 100, 6683−
6687. (c) Ho, T.-I.; Wu, J.-Y.; Wang, S.-L. Novel Photochemical
Rearrangement of Styrylfurans. Angew. Chem., Int. Ed. 1999, 38,
2558−2560. (d) Lewis, F. D.; Zuo, X. Conformer-specific photo-
isomerization of some 2-vinylbiphenyls. Photochem. Photobiol. Sci.
2003, 2, 1059−1066. (e) Lapouyade, R.; Koussini, R.; Nourmamode,
A.; Courseille, C. Divergent stereochemistry of photocyclization from
singlet and triplet states of 2-vinylbiphenyls. X-ray crystal structure of
cis-9-phenyl-10-methyl-9,10-dihydrophenanthrene. J. Chem. Soc.,
Chem. Commun. 1980, 740−742.
(7) Thompson, S.; Coyne, A. G.; Knipe, P. C.; Smith, M. D.
Asymmetric Electrocyclic Reactions. Chem. Soc. Rev. 2011, 40, 4217−
4231.
́
(8) Toth, B.; Hohmann, J.; Vasas, A. Phenanthrenes: A Promising
Group of Plant Secondary Metabolites. J. Nat. Prod. 2018, 81, 661−
678.
(9) Kovacs, A.; Vasas, A.; Hohmann, J. Natural phenanthrenes and
their biological activity. Phytochemistry 2008, 69, 1084−1110.
(10) Li, J.; Hu, G.; Wang, N.; Hu, T.; Wen, Q.; Lu, P.; Wang, Y.
Oligo(3,6-phenanthrene ethynylenes): Synthesis, Characterization,
and Photoluminescence. J. Org. Chem. 2013, 78, 3001−3008.
(11) Zhao, X.; Rainier, J. D. Pyridone photoelectrocyclizations to
pyridophenanthrenes. Tetrahedron 2017, 73, 4786−4789.
(12) (a) Sadowska, B.; Kuzma, L.; Micota, B.; Budzynska, A.;
́
Wysokinska, H.; Klys, A.; Wieckowska-Szakiel; Rozalska, B. New
biological potential of abietane diterpenoids isolated from Salvia
austriaca against microbial virulence factors. Microb. Pathog. 2016, 98,
132−139. (b) Manner, S.; Vahermo, M.; Skogman, M. E.; Krogerus,
S.; Vuorela, P. M.; Yli-Kauhaluoma, J.; Fallarero, A.; Moreira, V. M.
New derivatives of dehydroabietic acid target planktonic and biofilm
bacteria of Staphylococcus aureus and effectively disrupt bacterial
bacterial membrane integrity. Eur. J. Med. Chem. 2015, 102, 68−79.
(13) Ding, Q.; Zhou, X.; Fan, R. Recent advances in dearomatization
of heteroaromatic compounds. Org. Biomol. Chem. 2014, 12, 4807−
4815.
(14) Cheval, N. P.; Dikova, A.; Blanc, A.; Weibel, J.-M.; Pale, P.
Vinyl Nosylates: An Ideal Partner for Palladium-Catalyzed Cross-
Coupling Reactions. Chem. - Eur. J. 2013, 19, 8765−8768.
(15) (a) Suzuki, A. Cross-Coupling Reactions of Organoboranes: An
Easy Way to Construct C-C Bonds (Nobel Lecture),. Angew. Chem.,
Int. Ed. 2011, 50, 6722−6737. (b) Hassan, J.; Sevignon, M.; Gozzi,
C.; Schulz, E.; Lemaire, M. Aryl-aryl bond formation one century after
the discovery of the Ullmann reaction. Chem. Rev. 2002, 102, 1359−
1469. (c) Almond-Thynne, J.; Blakemore, D. C.; Pryde, D. C.; Spivey,
A. C. Site-selective Suzuki-Miyaura coupling of heteroaryl halides −
understanding the trends for pharmaceutically important classes.
Chem. Sci. 2017, 8, 40−62.
(16) For example, whereas the structure of 2 would track with
virulence inhibitors, 3 can be mapped onto the morphinan
architecture. See ref 12 and Hudlicky, T. Recent advances in process
development for opiate-derived pharmaceutical agents. Can. J. Chem.
2015, 93, 492−501.
(17) Kan, J.; Huang, S.; Lin, J.; Zhang, M.; Su, W. Silver-Catalyzed
Arylation of (Hetero)arenes by Oxidative Decarboxylation of
Aromatic Carboxylic Acids. Angew. Chem., Int. Ed. 2015, 54, 2199−
2203.
(18) In the absence of methanol, the ketene intermediate could be
observed spectroscopically, but it eventually decomposed to
unrecognizable material.
(19) We believe that TFAA reacts with small quantities of H2O
present in the reaction mixture. In the absence of TFAA, our yields for
the reaction were capricious.
D
Org. Lett. XXXX, XXX, XXX−XXX