Mendeleev Commun., 2019, 29, 198–199
Table 1 Resolution by entrainment of rac-3-(4-hydroxyphenoxy)propane-1,2-diol (rac-2) in water (50 ml, 8 mg of crystal seeds on every run).
Operation amount
of enantiomers/g
Amount
of rac-2
added/g
Mother
liquor
ee (%)
(R)-2 and (S)-2 obtained
Resolution
time/min
Run
T/°C
(R)-2
(S)-2
Yield/g
eea (%)
YEb/g
YEc (%)
1
2
3
4
5
6
3.000
0.302
0.512
0.508
0.442
0.512
1.500
1.444
1.588
1.401
1.586
1.393
1.500
1.556
1.413
1.600
1.414
1.608
150
215
390
305
480
350
23–24
27
27–28
27–28
26–27
27
(R) 0.310
(S) 0.519
(R) 0.516
(S) 0.451
(R) 0.519
(S) 0.445
39
57
74
84
76
84
0.113
0.288
0.374
0.371
0.386
0.366
7.5
18.5
23.6
23.2
24.3
22.8
3.8 (S)
7.7 (R)
8.4 (S)
9.8 (R)
9.4 (S)
10.4 (R)
a ee is enantiomeric excess (HPLC). bYE is the yield of enantiomer. YE (g) = [Yield (g) × ee (%)]/100 – 0.008 (seed weight). cYE (%) = [YE (g) × 100]/
Operation amount of (R)-2 or (S)-2 (g).
quinone occurs in a low yield (23%) and is accompanied by
contamination of the product.
O
H
Thus, both enantiomers of chiral drug prenalterol were obtained
based on spontaneous resolution of racemic 3-(4-hydroxyphen-
oxy)propane-1,2-diol upon crystallization from water. The proposed
scheme favorably competes with the ‘Chiral Pool’ concept due to
smaller number of stages and the use of racemic raw materials.
O
v
iv
(S)-1
(S)-2
OH
O
HO
i
OH
*
OH
ii
iii
Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi: 10.1016/j.mencom.2019.03.028.
rac-2
(S)-4
O
OMe
H
References
OMe
rac-3
v
O
iv
1 H. Leek and S. Andersson, Molecules, 2017, 22, 158.
2 H. Lorenz and A. Seidel-Morgenstern, Angew. Chem., Int. Ed., 2014, 53,
1218.
(R)-1
(R)-2
3 D. B. Amabilino and R. M. Kellogg, Isr. J. Chem., 2011, 51, 1034.
4 G. Levilain and G. Coquerel, CrystEngComm, 2010, 12, 1983.
5 A. A. Bredikhin and Z. A. Bredikhina, Chem. Eng. Technol., 2017, 40,
1211.
OH
(R)-4
6 The Merck Index, An Encyclopedia of Chemicals, Drugs, and Biologicals,
14th edn., ed. M. J. O’Neil, Merck and Co., Whitehouse Station, NJ,
USA, 2006.
7 T. P. Kenakin and D. Beek, J. Pharmacol. Exp. Ther., 1980, 213, 406.
8 D. G. Waller, Br. J. Clin. Pharmacol., 1990, 30, 157.
9 G. Barisione, M. Baroffio, E. Crimi and V. Brusasco, Pharmaceuticals,
2010, 3, 1016.
Scheme 1 Reagents and conditions: i, rac-ClCH2CH(OH)CH2OH, NaOH,
EtOH, reflux; ii, HBr (45% aq.), 50°C; iii, resolution by entrainment; iv, PPh3,
DEAD, THF, reflux; v, PriNH2, reflux.
Based on successful spontaneous resolution of compound 2
as a source of chirality, we suggest a new original scheme for the
preparation of enantiopure prenalterol 1 (Scheme 1), in which
the direct resolution of the racemic diol 2 by an entrainment
procedure was the key step. Conversion of thus obtained enantio-
mers of diol 2 into the target compounds 1 has been carried in
two steps. Initially, the intramolecular Mitsunobu etherification
of diols 2 to enantiomeric epoxides 4 was performed.‡ The cycliza-
tion proceeds in a high yield (up to 97%) and with a little loss of
enantiomeric purity (from 98 to 92–93% ee). By analogy with
similar cyclization,21 we assume that the initial configuration of
the chiral center is retained. Individual enantiomers of (S)-1 and
(R)-1 were obtained by reflux of (S)-4 and (R)-4 with excess
isopropylamine in the presence of minimum water.§
10 K. E. Fahrenholtz, R. W. Guthrie, R. W. Kierstead and J. W. Tilley,
Patent DE 2904799 A1, 1979.
11 R. W. Kierstead, A. Faraone, F. Mennona, J. Mullin, R. W. Guthrie,
H. Crowley, B. Simko and L. C. Blaber, J. Med. Chem., 1983, 26, 1561.
12 K. E. Fahrenholtz, R. W. Guthrie, R. W. Kierstead and J. W. Tilley,
Patent US 4202978A, 1980 (Chem. Abstr., 1980, 92, 94434u).
13 A. B. Davidson, R. W. Guthrie, R. W. Kierstead and A. Ziering, Patent
US 4471116A, 1984.
14 A. A. Bredikhin, Z. A. Bredikhina and D. V. Zakharychev, Mendeleev
Commun., 2012, 22, 171.
15 Z. A. Bredikhina, L. V. Konoshenko, D. V. Zakharychev, A. V. Pashagin,
A. T. Gubaidullin and A. A. Bredikhin, Mendeleev Commun., 2009,
19, 208.
16 F. M. Pasutto, N. N. Singh, F. Jamali, R. T. Coutts and S. Abuzar,
J. Pharm. Sci., 1987, 76, 177.
17 K. Okamoto, Yakugaku Zasshi, 1954, 74, 1069 (Chem. Abstr., 1955, 49,
11580).
Samples of rac-1 and rac-4 were obtained similarly from
racemic diol 2. Note that according to patent data,22 synthesis
of rac-4 by the reaction between epichlorohydrin and hydro-
18 R. R. Fayzullin, O. A. Antonovich, D. V. Zakharychev, A. I. Samigullina,
A. T. Gubaidullin and A. A. Bredikhin, in Proceedings of the VIII
International Symposium on Design and Synthesis of Supramolecular
Architectures, II Youth School on Supramolecular and Coordination
Chemistry, Kazan, 2016, p. 96.
19 Z.A. Bredikhina,V. G. Novikova,Yu.Ya. Efremov, D. R. Sharafutdinova
and A. A. Bredikhin, Russ. Chem. Bull., Int. Ed., 2008, 57, 2320 (Izv.
Akad. Nauk, Ser. Khim., 2008, 2275).
20 A. R. Schoofs, M. Langlois, C. R. Jeanpetit and M. F. Masson, Patent
US 4971995A, 1990 (Chem. Abstr., 1990, 112, 138737h).
21 Z.A. Bredikhina,A. V. Kurenkov, D. B. Krivolapov andA.A. Bredikhin,
Tetrahedron: Asymmetry, 2016, 27, 467.
‡
(S)-4-(2,3-Epoxypropoxy)phenol (S)-4. Yield 97%, mp 81–83.5°C
(hexane–EtOAc), [a]D20 +12.8 (c 1.0, MeOH), 93% ee (HPLC).
(R)-4-(2,3-Epoxypropoxy)phenol (R)-4. Yield 95%, mp 81–84°C
(hexane–EtOAc), [a]D20 –13.5 (c 1.0, MeOH), 92% ee (HPLC).
§
(S)-1-(4-Hydroxyphenoxy)-3-isopropylaminopropan-2-ol (S)-1. Yield
89%, mp 125–127°C (EtOAc), [a]D20 –1.9 (c 1.0, MeOH), [a]D20 –21.0
(c 1.0, 0.1 n HCl) {lit.,6 mp 127–128°C (EtOAc), [a]D20 = –1 1 (c 0.94,
MeOH); lit.,13 [a]D25 –20.67 (c 1.0, 0.1 n HCl)}, 98% ee (HPLC).
(R)-1-(4-Hydroxyphenoxy)-3-isopropylaminopropan-2-ol (R)-1. Yield
94%, mp 124–126°C (EtOAc), [a]D20 +2.4 (c 1.0, MeOH), [a]D20 = +18.4
(c 1.0, 0.1 n HCl) {lit.,13 mp 126–127°C (acetone), [a]D25 = +20.85 (c 1.0,
0.1 n HCl)}, 95% ee (HPLC).
22 J. J. Baldwin and D. E. McClure, Patent EU 0006614 A2, 1980.
Received: 18th October 2018; Com. 18/5721
– 199 –