free energy associated to the helical folding pattern can be
estimated at 60 and 25 J mol21 for 2b and 2c, respectively.
The above differences in the propensity of different orientations
of equivalent structural motifs to induce a given secondary
structure are remarkable and underline the potential of carbohy-
drates as conformational modulators. Particularly notable is the
conformational uniqueness and stability associated to the
N-glucopyranosyl derivative 2b. Additional dynamic NMR studies
confirmed that the 15-membered intramolecular hydrogen bonds
holding the helix structure survived in the presence of up to 30%
dimethyl sulfoxide, which is consistent with previous observations
for natural N-glycopeptides in non aqueous solvents.9 The
conclusions of this study should make the rational design of this
new family of carbohydrate-based foldamers feasible.
Fig. 5 Structures of the 1a:benzoate (four-centre) and 1b:benzoate (six-
centre) complexes.
We thank the Spanish Ministerio de Educacio´n y Ciencia for
financial support (contracts number CTQ2006-15515-C02-01/
BQU and CTQ2004-05854/BQU) and for a doctoral fellowship
(to DR-L).
Notes and references
{ Calculations were performed with the MACROMODEL 6.0 package
and the GB/SA continuous solvent model for chloroform.
1 (a) X. Li and D. Yang, Chem. Commun., 2006, 3367; (b) D. Seebach,
A. K. Beck and D. J. Bierbaum, Chem. Biodiversity, 2004, 1, 1111; (c)
D. J. Hill, M. J. Mio, R. B. Prince, T. S. Hughes and J. S. Moore, Chem.
Rev., 2001, 101, 3893; (d) S. H. Gelleman, Acc. Chem. Res., 1998, 31, 173.
2 (a) T. D. W. Claridge, D. D. Long, C. M. Baker, B. Odell, G. H. Grant,
A. A. Edwards, G. E. Tranter, G. W. J. Fleet and M. D. Smith, J. Org.
Chem., 2005, 70, 2082; (b) S. A. W. Gruner, V. Truffault, G. Voll,
E. Locardi, M. Sto¨ckle and H. Kessler, Chem.–Eur. J., 2002, 8, 4365; (c)
L. Szabo, B. L. Smith, K. D. McReynolds, A. L. Parrill, E. R. Morris
and J. Gervay, J. Org. Chem., 1998, 63, 1074.
3 (a) J. L. Jime´nez Blanco, P. Bootello, R. Gutie´rrez Gallego, C. Ortiz Mellet
and J. M. Garc´ıa Ferna´ndez, Chem. Commun., 2004, 92; (b) J. L.
Jime´nez Blanco, P. Bootello, C. Ortiz Mellet and J. M. Garc´ıa Ferna´ndez,
Eur. J. Org. Chem., 2006, 183; (c) J. L. Jime´nez Blanco, P. Bootello,
J. M. Benito, C. Ortiz Mellet and J. M. Garc´ıa Ferna´ndez, J. Org. Chem.,
2006, 71, 5136.
4 C. Dolain, J.-M. Le´ger, N. Delsuc, H. Gornitzka and I. Huc, Proc. Natl.
Acad. Sci. U. S. A., 2005, 102, 16146.
5 J. M. Garc´ıa Ferna´ndez and C. Ortiz Mellet, Adv. Carbohydr. Chem.
Biochem., 1999, 55, 35.
Fig. 6 Job’s plot (A) and binding isotherm (B) for the complexation of
benzoate by receptor 2b. The proposed structure for the 2:1 complex is
depicted (C; only one of the two molecules of 2b in the complex is
represented).
6 Sugar thioureas as anion receptors: (a) J. L. Jime´nez Blanco, J. M. Benito,
C. Ortiz Mellet and J. M. Garc´ıa Ferna´ndez, Org. Lett., 1999, 8, 1217; (b)
J. M. Benito, M. Go´mez-Garc´ıa, J. L. Jime´nez Blanco, C. Ortiz Mellet
and J. M. Garc´ıa Ferna´ndez, J. Org. Chem., 2001, 66, 1366; (c) Recent
references for bis(thiourea) receptors: A. M. Costero, M. Colera,
P. Gavin˜a and S. Gil, Chem. Commun., 2006, 761; (d) A. Ragusa,
S. Rossi, J. M. Hayes, M. Stein and J. D. Kilburn, Chem.–Eur. J., 2005,
11, 5674; (e) S.-Y. Liu, L. Fang, Y.-B. He, W.-H. Chan, K. T. Yeung,
Y.-K. Cheng and R.-H. Yang, Org. Lett., 2005, 7, 5825; (f) F. M. Pfeffer,
T. Gunnlaugsson, P. Jensen and P. E. Kruger, Org. Lett., 2005, 7, 5357.
7 P. Bu¨hlmann, S. Nishizawa, K. P. Xiao and Y. Umezawa, Tetrahedron,
1997, 53, 1647.
8 (a) K. A. Connors, Binding Constants: The Measurement of Molecular
Complex Stability, Wiley, Chichester, 1987; (b) A. P. Bisson, C. A. Hunter,
J. C. Morales and K. Young, Chem.–Eur. J., 1998, 4, 845–851; (c)
A. P. Bisson, F. J. Carver, D. S. Eggleston, R. C. Haltiwanger,
C. A. Hunter, D. L. Livingston, J. F. McCabe, C. Rotger and
A. E. Rowan, J. Am. Chem. Soc., 2000, 122, 8856.
monotopic benzylthioureas 1b and 1c formed 1:1 complexes, the
helix-forming derivatives 2b and 2c provided sigmoid binding
isotherms and Job’s plots consistent with 2:1/1:1 host:guest
equilibria (Fig. 6 A, B).8 Although probably both NH protons
at each thiourea segment contribute to helix stability, just those
located at 14-bonds from the oxygen acceptors are strictly
necessary, the other two remaining accessible for intermolecular
interactions in the 2:1 complex (Fig. 6 C). In the presence of excess
benzoate, the six-centre hydrogen-bonded 1:1 complex is formed.
Yet, this process has a significant penalty associated to helix
disruption. The lower increment in the Kas(1:1) values on going
from 1b:benzoate (929 ¡ 8 M21) or 1c:benzoate (625 ¡ 14 M21
)
to 2b:benzoate (1106 ¡ 49 M21) or 2c:benzoate (1930 ¡ 80 M21),
as compared with the corresponding data for 1a and 2a, reflects
the extra-energy needed to destroy the two concerted 15-membered
intramolecular hydrogen bonds. From these data, the stabilising
9 (a) K.-C. Lee, M. L. Falcone and J.-T. Davis, J. Org. Chem., 1996, 61,
4198.
This journal is ß The Royal Society of Chemistry 2007
Chem. Commun., 2007, 831–833 | 833