triclinic crystals, at 173 K: a 6.7490(3), b 9.6460(3), c 13.4060(7) Å; α 95.996(1), β 98.8560(1), γ 107.861(1)°;
–
V 810.15(4) Å3; space group
; Z 2; dcalc 1.352 g/cm3; μ 0.364 mm-1; F(000) 344. Compound 4r
P1
(C17H15N3Cl2S) formed triclinic crystals, at 173 K: a 6.8560(2), b 9.6910(3), c 13.2340(5) Å; α 95.975(2),
–
β 93.839(2), γ 108.382(2)°; V 825.24(5) Å ; space group ; Z 2; dcalc 1.466 g/cm3; μ 0.521 mm-1; F(000) 376.
Compound 6k (C27H25Cl2FN2S) formed monoclinic crystals, at 293 K: a 10.7328(3), b 23.6570(9), c 11.0874
(4) Å; β 155.219(3)°; V 2546.8(1) Å3; space group P21; Z 4; dcalc 1.303 g/cm3; μ 0.363 mm-1; F(000) 1040.
3
P1
Compound 7k (C26H22ClF2N3S2) formed triclinic crystals, at 190 K: a 11.1036(3), b 12.0797(3), c 19.9825(7) Å;
–
α 99.112(1), β 103.434(1), 106.634(2)°; V 2423.98(12) Å3; space group
; Z 4 (Z' 2); dcalc 1.409 g/cm3,
P1
μ 0.366 mm-1; F(000) 1064. Compound 8n (C23H19N3O3S2) formed monoclinic crystals, at 183 K: a 13.9793(6),
b 7.3442(2), c 19.6917(12) Å; β 90.5430(10)°; V 2021.59(16) Å3; space group P21/c; Z 4; dcalc 1.477 g/cm3;
μ 0.296 mm-1; F(000) 936.
The unit cell parameters and the intensities of 7132 reflections for compound 3k, 5687 reflections (3669
independent, Rint 0.0176) for compound 4p, 5692 reflections (3749 independent, Rint 0.0308) for compound 4r,
9764 reflections for compound 6k, 15878 reflections (10923 independent, Rint 0.040) for compound 7k, 7826
reflections (4248 independent, Rint 0.1007) for compound 8n were measured on a Bruker-Nonius KappaCCD
automated X-ray diffractometer (λMoKα radiation, 0.71073 Å, graphite monochromator). The structures of
the compounds were solved by the direct method with SIR2004 software [30] and were refined with SHELXL
software package [31] in anisotropic approximation for non-hydrogen atoms. The hydrogen atom positions were
calculated geometrically, taking into account the differential synthesis of electron density and were refined with
the "rider" model at Uiso = 1.5Ueq for the methyl group and Uiso = 1.2Ueq for the rest of the hydrogen atoms. The
final probability factors for the structures 3k, 4p, 4r, 6k, 7k, and 8n were respectively R1 0.0785, wR2 0.1965;
R1 0.0373, wR2 0.0919; R1 0.0459, wR2 0.1154; R1 0.0817, wR2 0.2429; R1 0.095, wR2 0.301; and R1 0.0581, wR2
0.0993. The complete crystallographic data sets for compounds 3k, 4p, 4r, 6k, 7k, and 8n were deposited at the
Cambridge Crystallographic Data Center (deposits CCDC 976565, CCDC 956666, CCDC 956665, CCDC
976566, CCDC 979541, and CCDC 957328, respectively).
The authors would like to express their gratitude to A. Mishnev and D. Stepanov for the X-ray structural
investigations.
REFERENCES
1.
I. Skrastiņa, A. Baran, and D. Muceniece, Khim. Geterotsikl. Soedin., 669 (2013). [Chem. Heterocycl.
Compd., 49, 624 (2013).]
2.
3.
B. Zaleska and S. Lis, Synth. Commun., 31, 189 (2001).
K. Ostrowska, K. Szymoniak, M. Szczurek, K. Jamroży, and M. Rąpała-Kozik, Tetrahedron, 67, 5219
(2011).
4.
5.
B. Zaleska and B. Slusarska, Monatsh. Chem., 112, 1187 (1981).
P. Huang, X. Fu, Y. Liang, R. Zhang, and D. Dong, Aust. J. Chem., 65, 121 (2012).
F. Jian, J. Zheng, Y. Li, and J. Wang, Green Chem., 11, 215 (2009).
J. Goerdeler and H. Pohland, Chem. Ber., 94, 2950 (1961).
B. Zaleska, D. Ciez, and A. Haas, Synth. Commun., 26, 4165 (1996).
J. Goerdeler and J. Gnad, Chem. Ber., 98, 1531 (1965).
6.
7.
8.
9.
10.
H. Foks, D. Pancechowska-Ksepko, M. Janowiec, Z. Zwolska, and E. Augustynowicz-Kopeć,
Phosphorus, Sulfur Silicon Relat. Elem., 180, 2291 (2005).
11.
12.
D. Moya Argilagos, M. I. García Trimiño, A. Macías Cabrera, A. Linden, and H. Heimgartner, Helv.
Chim. Acta, 80, 273 (1997).
J. Goerdeler and U. Keuser, Chem. Ber., 97, 2209 (1964).
101