extracted with hexane and the hexane fraction crystallized at 245 °C. 4a
was isolated as colourless plates (2.80 mmol, 1.60 g, 40%): IR (Nujol, n/
cm21): 2069vs, 1820s, 1732m, 1460vs, 1377s, 1246s, 1044vs, 900vs, 841s,
790s, 765s, 721m, 646w, 623w, 603w, 409w. 1H NMR (400 MHz, C6D6, 25
°C): d 4.59 (sp, 3JH,H = 3.0 Hz, 4H, SiH); 2.15 (s, 15H, Cp–Me); 0.26 (d,
3JH,H = 3.0 Hz, 24H, NSiMe). 13C NMR (100.6 MHz, C6D6, 25 °C): d
119.3 (Cp–C), 11.4 (Cp-Me), 3.0 (NSiMe). 4a (0.87 mmol, 500 mg) was
dissolved in 10 mL of hexane and an excess of AlMe3 (6.9 mmol, 501 mg)
added. After stirring for 2 h at ambient temperature, the slightly cloudy
reaction mixture was centrifuged. The clear solution yielded colourless
crystals of 6a at 245 °C (0.62 mmol, 300 mg, 71%): IR (Nujol, n/cm21):
1462vs, 1377vs, 1258w, 1237m, 1213m, 1193m, 1023w, 913w, 855m,
721s, 579m, 499w, 458w. 1H NMR (400 MHz, C6D6, 25 °C): d 1.75 (s, 15H,
Cp–Me); 20.18 (s, 24H, AlMe). 13C NMR (100.6 MHz, C6D6, 25°C): d
120.9 (Cp-C), 11.8 (Cp-Me), 1.49 (br s, AlMe). Satisfactory elemental
analyses were obtained for 4a and 6a (C, H, N).
§ Similar observations were made by Teuben et al. when studying
corresponding acid–base reactions of homoleptic complexes
Ln[N(SiMe3)2]3 and Ln[CH(SiMe3)2]3 with Cp*H. However, due to an
increased thermal lability of the hydrocarbyl ligand and a higher kinetic
Fig. 1 Molecular structure of 6a. Selected bond lengths (Å) and angles (°):
Lu–Al1 3.0612(9), Lu–Al2 2.9138(9), Lu–C(Cp*) 2.566(3)–2.603(3), Lu–
C11 2.501(3), Lu–C12 2.509(3), Lu–C15 2.597(3), Lu–C16 2.572(3), Lu–
H11A 2.41(3), Lu–H12A 2.44(3), Lu–H15B 2.46(4), Lu–H16B 2.41(3),
Al1–C11 2.082(3), Al1–C12 2.072(3), Al1–C13 1.962(3), Al1–C14
1.972(3), Al2–C15 2.065(3), Al2–C16 2.067(4), Al2–C17 1.959(3), Al2–
C18 1.963(3); Al1–Lu–Al2 112.01(2), C11–Lu–C12 84.4(1), C15–Lu–C16
80.0(1), C11–Lu–C16 84.5(1), C12–Lu–C15 85.0(1), Lu–C11–Al1 83.3(1),
Lu–C12–Al1 83.3(1), Lu–C15–Al2 76.4(1), Lu–C16–Al2 77.0(1), Lu–
C11–H11A 73(2), Lu–C11–H11B 162(2), Lu–C11–H11C 90(2), Lu–C12–
H12A 74(2), Lu–C12–H12B 161(2), Lu–C12–H12C 93(2), Lu–C15–H15A
118(2), Lu–C15–H15B 71(2), Lu–C15–H15C 139(3), Lu–C16–H16A
137(2), Lu–C16–H16B 69(2), Lu–C16–H16C 116(2).
barrier for Cp* introduction [steric bulk: CH(SiMe3)2 ≈ N(SiMe3)2
>
N(SiHMe2)2], well-defined half-sandwich complexes of the smaller rare-
earth elements could not be obtained.13 Also for steric reasons, putative
Cp*Lu[CH(SiMe3)2]2 could not be obtained by a salt metathesis reaction
starting from Cp*Lu[CH(SiMe3)2]2Cl2Li(thf)2 and LiCH(SiMe3)2]2.6b
¶ Crystallographic data for 6a: C18H39Al2Lu, M = 484.42, orthorhombic,
space group Pbca, a = 17.2295(1), b = 14.3690(1), c = 17.9638(1) Å, V
= 4447.31(5) Å3, Z = 8, rcalc = 1.447 gcm23, F(000) = 1952, m(Mo–Ka)
= 4.513 mm21, l = 0.71073 Å, T = 173 K. The 48726 reflections
measured on a Nonius Kappa CCD system yielded 4063 unique data (Qmax
= 25.4°, Rint = 0.033) [3617 observed reflections (I > 2s(I)]. R1 = 0.0208,
suppdata/cc/b2/b212754g/ for crystallographic data in cif or other electronic
format.
respectively.15 A considerably smaller deviation of the four-
membered metallacycle from planarity was also reported for
complex Cp2Y(m-CH3)2Al(CH3)2 (•C–Y–C–Al1 10–13°).16 In
complex 6a, the hydrogen atoms of the bridging methyl groups
were located and refined. The bridging 5-coordinate carbon
atoms display severely distorted trigonal bipyramidal geome-
tries with one hydrogen atom and the lutetium metal in the
apical positions (•Lu–C11–H11B 162(2)°). Moreover, one of
the equatorial hydrogen atoms each forms a close contact to the
lutetium centre (2.41(3)–2.46(4) Å) involving angles •Lu–C–
H as acute as 69(2)°. These solid-state structural features can be
interpreted in terms of Lu–H–C interactions, which, however,
cannot be observed by any spectroscopic method.
∑ An associative mechanism is also found by a variable temperature NMR
investigation of rac-[Me2Si(2-Me-C9H5)2]Y(AlMe4) in the temperature
range of 25 to 100 °C. Line shape treatment led to an entropy barrier DS‡
of 2130(8) J K21mol21 which is in agreement with a highly ordered
3
transition state favouring an h -bonded tetramethylaluminate moiety (cf.,
DS‡ = +123.1 J K21mol21 for Al2Me6).15
1 S. Arndt and J. Okuda, Chem. Rev., 2002, 102, 1953.
2 (a) H. Yasuda and E. Ihara, Bull. Chem. Soc. Jpn., 1997, 70, 1745; (b)
H. Yasuda, J. Polym. Sci. Part A: Polym. Chem., 2001, 39, 1955.
3 G. W. Coates, Chem. Rev., 2000, 100, 1223.
4 (a) T. Ishihara, T. Seimiga, M. Kuramoto and M. Uoi, Macromolecules,
1986, 19, 2464; (b) T. Ishihara, M. Kuramoto and M. Uoi, Macromole-
cules, 1988, 21, 3256.
5 For a further example, see: P. Foster, J. C. W. Chien and M. D. Rausch,
Organometallics, 1996, 15, 2404 and references therein.
6 (a) H. van der Heijden, C. J. Schaverien and A. G. Orpen,
Organometallics, 1989, 8, 255; (b) H. van der Heijden, P. Pasman, E. J.
M. de Boer, C. J. Schaverien and A. G. Orpen, Organometallics, 1989,
8, 1459; (c) H. J. Heeres, A. Meetsma, J. H. Teuben and R. D. Rogers,
Organometallics, 1989, 8, 2637; (d) W. T. Klooster, L. Brammer, C. J.
Schaverien and P. H. M. Budzelaar, J. Am. Chem. Soc., 1999, 121,
1381.
3
2
We have recently detected truly h -coordinating AlEt4
ligands in the solid state structure of homoleptic [Yb(AlEt4)2]n
involving the large Yb(II) centre.17 This previous structural
evidence combined with the highly fluxional behaviour of 6a in
2
3
2
solution, implicating transient h /h -coordinating AlMe4
moieties, gives striking evidence for an associative methyl
group exchange at sterically unsaturated rare-earth metal
18
centres (Scheme 2).∑ Note that intramolecular methyl group
exchange in trimethylaluminium, Al2Me6, occurs via a dis-
sociative mechanism.19
7 A. Mandel and J. Magull, Z. Anorg. Allg. Chem., 1996, 622, 1913.
8 W. J. Evans, J. C. Brady and J. W. Ziller, J. Am. Chem. Soc., 2001, 123,
7711.
9 (a) J. Guan, S. Jin, Y. Lin and Q. Shen, Organometallics, 1992, 11,
2483; (b) L. Mao, Q. Sheng and S. Jin, Polyhedron, 1994, 13, 1023.
10 R. Anwander, Top. Organomet. Chem., 1999, 2, 1.
11 (a) J. Eppinger, M. Spiegler, W. Hieringer, W. A. Herrmann and R.
Anwander, J. Am. Chem. Soc., 2000, 122, 3080; (b) M. G. Klimpel, W.
A. Herrmann and R. Anwander, Organometallics, 2000, 19, 4666.
12 M. G. Klimpel, H. W. Görlitzer, M. Tafipolsky, M. Spiegler, W. Scherer
and R. Anwander, J. Organomet. Chem., 2002, 647, 236.
13 M. Booij, N. H. Kiers, H. J. Heeres and J. H. Teuben, J. Organomet.
Chem., 1989, 364, 79.
14 J. Holton, M. F. Lappert, D. G. H. Ballard, R. Pearce, J. L. Atwood and
W. E. Hunter, J. Chem. Soc., Dalton Trans., 1979, 45.
15 P. L. Watson and G. W. Parshall, Acc. Chem. Res., 1985, 18, 51.
16 G. R. Scollary, Aust. J. Chem., 1978, 31, 411.
17 M. G. Klimpel, R. Anwander, M. Tafipolsky and W. Scherer,
Organometallics, 2001, 20, 3983.
18 Jörg Eppinger, Ph.D. Thesis, Technische Universität München, 1999.
19 M. E. O’Neill and K. Wade, Aluminum in Comprehensive Organome-
tallic Chemistry (eds. G. Wilkinson, F. G. A. Stone and E. W. Abel),
Pergamon Press, New York, 1982, p. 593.
Scheme 2 Proposed associative methyl group exchange in rare-earth
tetraalkylaluminate complexes.
We thank the Deutsche Forschungsgemeinschaft, the Fonds
der Chemischen Industrie, and Prof. Wolfgang A. Herrmann for
generous support. We are also grateful to Prof. Robert M.
Waymouth for his hospitality, technical assistance and stimulat-
ing discussions.
Notes and references
‡ All operations were performed with rigorous exclusion of air and water,
using high-vacuum and glovebox techniques. Representative synthesis for
4a and 6a: A solution of Cp*H (21.00 mmol, 2.861 g) in 10 mL of toluene
was added to a solution of 1b (7.00 mmol, 5.013 g) in toluene and refluxed
for 70 h. After removal of solvent and released silylamine, the residue was
CHEM. COMMUN., 2003, 1008–1009
1009