C O M M U N I C A T I O N S
Table 1. Comparative Recycling and Reuse in BMI‚PF6 of IL
Catalyst 10 and Catalysts 1 and 4 in the RCM of Diene 11
demanding olefin 17, we used more drastic conditions (5 mol %
of IL catalyst 10, at 60°C over 4 h). Although conversions of 92%
were obtained for the first two cycles, they decreased dramatically
to reach 73% after the third cycle due to the decomposition of the
catalyst after repeated heating. Concerning the oxygen-containing
dienes such as 19, 21, and 23, the IL catalyst proved to be efficient
only for the first two cycles. We attribute this to the slow but
competing decomposition of the catalytic system where a stable
oxygen-ligated ruthenium carbene complex can be formed due to
the presence of oxygen’s substrate. These limitations of IL catalyst
10 led us to develop a more efficient IL catalyst, based on complex
5, to promote efficient RCM with trisubstituted or oxygen-
containing olefins. Its preparation is underway in our laboratory.
In summary, we have developed an ionic liquid-supported catalyst
for olefin metathesis carried out in IL. The IL catalyst has shown
high activity with a remarkable recyclability and can be stored in
BMI‚PF6 several months without loss of activity.
cycle (% conv.a)
catalyst
1
2
3
4
5
6
7
8
9
10b
10
1
4
>98 >98 >98 >98 >98 96 92 92 92 95
>98
>98
20
40
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
20
a Determined by 1H NMR spectroscopy analysis. b 13 as starting material.
months. A similarly high conversion was obtained, showing that
IL catalyst remains active. Moreover, this recycled catalyst solution
was used for the metathesis of a second substrate 13 (cycle 10) to
lead to the cyclized product 14 with 95% conversion, but the crude
NMR spectrum showed a contamination by small amounts (<5%)
of compound 12, product of the previous reaction. This contamina-
tion can be explained by the partial miscibility of toluene in BMI‚
PF6 (23 wt % at 26°C)9 which keeps small amounts of product in
the ionic liquid phase. At last, importantly, when the IL catalyst
10 lost its activity after repeated use, the BMI‚PF6 solvent could
be recovered by treatment with black carbon6b and reused with a
new loading of catalyst.
Acknowledgment. We thank G. Quillien for the preparation
of BMI‚PF6, Dr. M. Garayt and Dr. R. Gre´e for helpful discussion,
and the Ministe`re de la Recherche et de la Technologie for financial
support (Grant to N.A. and H.C.).
Supporting Information Available: Experimental details and
analytical data for the work described (PDF). This material is available
Having established the recyclability and reuse of IL catalyst 10
in BMI‚PF6, we tried several RCM reactions with other substrates
(Table 2). Ring-closing metathesis of 13 has afforded the six-
membered ring 14 in quantitative conversion for each of six
consecutive cycles.
References
(1) For recent reviews on olefin metathesis, see for example: (a) Trnka, T.
M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18-29. (b) Fu¨rstner, A.
Angew. Chem., Int. Ed. 2000, 39, 3012-3043.
(2) (a) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 2039-2041. (b) Schwab, P.; Grubbs, R. H.; Ziller,
J. W. J. Am. Chem. Soc. 1996, 118, 100-110. (c) Kingsbury, J. S.; Harrity,
J. P. A.; Bonitatebus, P. J.; Hoveyda, A. H. J. Am. Chem. Soc. 1999, 121,
791-799 (d) Gessler, S.; Randl, S.; Blechert, S. Tetrahedron Lett. 2000,
41, 9973-9976. (e) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org.
Lett. 1999, 1, 953-956. (f) Nolan, S. P.; Huang, J.; Stevens, E. D.;
Petersen, J. L. J. Am. Chem. Soc. 1999, 121, 2674-2678. (g) Scholl, M.;
Trnka, T. M.; Morgan, J. P.; Grubbs, R. H. Tetrahedron Lett. 1999, 40,
2247-2250.
Table 2. Recyclability of IL-cat 10 in Various RCM Reactions
(3) For recent review on supported catalyst, see: Leadbeater, N. E.; Marco,
M. Chem. ReV. 2002, 102, 3217-3274.
(4) For the use of solid polymer as support for Ru catalyst, see: (a) Nguyen,
S. T.; Grubbs, R. H. J. Organomet. Chem. 1995, 497, 195-200. (b)
Ahmed, M.; Barrett, A. G. M.; Braddock, D. C.; Cramp, S. M.; Procopiou,
P. A. Tetrahedron Lett. 1999, 40, 8657-8662. (c) Schu¨rer, S. C.; Gessler,
S.; Buschmann, N.; Blechert, S. Angew. Chem., Int. Ed. 2000, 39, 3898-
3901. (d) Jafarpour, L.; Nolan, S. P. Org. Lett. 2000, 2, 4075-4078. For
dendrimer support, see: (e) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.;
Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168-8179. For soluble
polymer support, see: (f) Yao, Q. Angew. Chem., Int. Ed. 2000, 39, 3896-
3898. (g) Connon, S. J.; Dunne, A. M.; Blechert, S. Angew. Chem., Int.
Ed. 2002, 41, 3835-3838.
(5) For recent review on ionic liquids, see: (a) Wasserscheid, P.; Keim, W.
Angew. Chem., Int. Ed. 2000, 39, 3772-3789. (b) Dupont, J.; de Souza,
R. F.; Suarez, P. A. Z. Chem. ReV. 2002, 102, 3667-3692.
(6) (a) Buijsman, R. C.; van Vuuren, E.; Sterrenburg, J. G. Org. Lett. 2001,
3, 3785-3787. (b) Semeril, D.; Olivier-Bourgbigou, H.; Bruneau, C.;
Dixneuf, P. H. Chem. Commun. 2002, 146-147.
(7) For the physicochemical properties of BMI‚PF6: (a) Chauvin, Y.;
Mussmann, L.; Olivier, H. Angew. Chem., Int. Ed. Engl. 1995, 34, 2698-
2700. (b) Suarez, P. A. Z.; Dullius, J. E.; Einloft, S.; de Souza, R. F.;
Dupont, J. Polyhedron 1996, 15, 1217.
(8) (a) Brasse, C. C.; Englert, U.; Salzer, A.; Waffenschmidt, H.; Wasser-
scheid, P. Organometallics 2000, 19, 3818-3823. (b) Wasserscheid, P.;
Waffenschmidt, H.; Machnitzki, P.; Kottsieper, K. W.; Stelzer, O. Chem.
Commun. 2001, 451-452. (c) Kottsieper, K. W.; Stelzer, O.; Wasser-
scheid, P. J. Mol. Catal. A: Chem. 2001, 285-288. (d) Favre, F.; Olivier-
Bourbigou, H.; Commereuc, D.; Saussine, L. Chem. Commun. 2001,
1360-1361. (e) Bronger, R. P. J.; Silva, S. M.; Kamer, P. C. J.; van
Leeuwen, P. W. N. M. Chem. Commun. 2002, 3044-3045.
a 10 (2.5 mol %), BMI‚PF6 (0.2M), 60 °C, 45 min. b Determined by 1H
NMR spectroscopic analysis. c 10 (5 mol %), BMI‚PF6 (0.2 M), 60 °C, 4
h. d 10 (2.5 mol %), BMI‚PF6 (0.2M), 60 °C, 2 h.
(9) Partial miscibility of organic compounds in IL has been recently
reported: Blanchard, L. A.; Brennecke, J. F. Ind. Eng. Chem. Res. 2001,
40, 287-292.
In the case of the seven membered ring 16, quantitative
conversion in up to three cycles was obtained to reach 80%
conversion after the seventh cycle. However, with the sterically
JA021484X
9
J. AM. CHEM. SOC. VOL. 125, NO. 31, 2003 9249