Palladium-Catalyzed N-Arylation of N,N-Dialkylhydrazines
UPDATES
133.9, 131.9, 128.9, 128.9, 127.9, 127.5, 127.1, 126.9, 124.1,
118.9, 117.3, 115.0.
product under these modified conditions (Table 2, en-
tries 15, 20, 43).
Conclusions
Acknowledgements
We have developed a straightforward route for the
preparation of N,N-dialkyl-N’-arylhydrazines from
N,N-dialkylhydrazines and aryl chlorides in the pres-
Work carried out in the framework of the National Project
“Stereoselezione in Sintesi Organica. Metodologie ed Appli-
cazioni” supported by the Ministero dell’Università e della
ence of Pd2(dba)3 as the palladium source, Xphos [or Ricerca Scientifica e Tecnologica and by the University “La
G
Sapienza.”
2-(2’,6’-dimethoxybiphenyl)dicyclohexylphosphine,
ligand d, with ortho-substituted aryl chlorides] as the
ligand, dioxane as the solvent, and NaO-t-Bu as the
base. The usually high to excellent yields and the sim-
plicity of the experimental procedure make this
method particularly convenient for the preparation of
this class of compounds.
References
[1] a) L. F. Lee, S. C. Banerjee, H. C. Huang, J. J. Li, R. E.
Miller, D. B. Reitz, S. J. Tremont, U. S. Patent 831,284,
2004; Chem. Abstr. 2004, 140, 111291; b) B. T. Keller,
K. C. Glenn, R. E. Manning, U. S. Patent 831,284, 2001;
Chem. Abstr. 2001, 135, 137410; c) L. F. Lee, S. C.
Banerjee, H.-C. Huang, J. J. Li, U. S. Patent 109,551,
2000; Chem. Abstr. 2000, 133, 193089; d) D. B. Reitz,
L. F. Lee, J. J. Li, H.-C. Huang, S. J. Tremont, R. E.
Miller, S. C. Baneriee, R. E. Manning, K. C. Glenn,
B. T. Keller, World Patent WO 9840375, 1998; Chem.
Abstr. 1998, 129, 260353; e) D. B. Reitz, L. F. Lee, J. J.
Li, H.-C. Huang, S. J. Tremont, R. E. Miller, S. C. Bane-
rjee, World Patent WO 9733882, 1997; Chem. Abstr.
1997, 127, 307312.
[2] a) S. Kajita, M. Ishii, A. Satoh, M. Koguchi, World
Patent WO 2003062195, 2003; Chem. Abstr. 2003, 139,
279230; b) Y. Sanemitsu, Y. Tohyama, World Patent
WO 2000021936, 2000; Chem. Abstr. 2000, 132, 279230.
[3] J. E. Low, B. K. Trivedi, World Patent WO 9942464,
1999; Chem. Abstr. 1999, 131, 179809.
Experimental Section
Melting points were determined with a Büchi B-545 appara-
tus and are uncorrected. All of the reagents, catalysts, and
solvents are commercially available and were used as pur-
chased, without further purification. Reaction products were
purified on axially compressed columns, packed with SiO2
25–40 mm (Macherey–Nagel), connected to a Jasco RI-031
Plus solvent delivery system and to a Jasco PU-2087 Plus re-
fractive index detector, and eluting with n-hexane/ethyl ace-
1
tate mixtures. H NMR (400 MHz), 13C NMR (100.6 MHz)
and 19F NMR (376.5 MHz) spectra were recorded with a
Bruker Avance 400 spectrometer. Splitting patterns are de-
signed as s (singlet), d (doublet), t (triplet), q (quartet), qp
(quintuplet), m (multiplet), or bs (broad singlet). IR spectra
were recorded with a Jasco FT/IR-430 spectrometer. Mass
spectra were recorded with a Shimadzu GCMS-QP2010S.
[4] G. Ascher, H. Berner, J. Hildebrandt, World Patent WO
2001009095, 2001; Chem. Abstr. 2001, 134, 147722.
[5] M. S. South, J. J. Parlow, World Patent WO 2001079155,
2001; Chem. Abstr. 2001, 135, 318330.
[6] M. Hojo, R. Masuda, E. Okada, Synthesis 1990, 481.
[7] S. L. Buchwald, S. Wagaw, O. Geis, World Patent WO
9943643, 1999; Chem. Abstr. 1999, 131, 199501.
Typical Procedure for the Synthesis of N,N-Dialkyl-
N’-arylhydrazines (3) from N,N-Dialkylhydrazines (1)
and Aryl Chlorides (2); Preparation of (3a)
[8] S. Cacchi, G. Fabrizi, A. Goggiamani, E. Licandro, S.
Maiorana, D. Perdicchia, Org. Lett. 2005, 7, 1497.
[9] a) X. Huang, K. W. Anderson, D. Zim, L. Jiang, A.
Klapars, S. L. Buchwald, J. Am. Chem. Soc. 2003, 125,
6653; see also: b) D. W. Old, J. P. Wolfe, S. L. Buch-
wald, J. Am. Chem. Soc. 1998, 120, 9722; c) T. E.
Barder, S. D. Walker, J. R. Martinelli, S. L. Buchwald,
J. Am. Chem. Soc. 2005, 127, 4685.
[10] M. Netherton, G. C. Fu, Org. Lett. 2001, 3, 4295.
[11] a) M. Kranenburg, Y. E. M. van der Burgt, P. C. J.
Kramer, P. W. N. M. van Leeuwen, K. Goubitz, J.
Fraanje, Organometallics 1995, 14, 3081; for recent re-
views on the use of Xantphos ligands in transition
metal-catalyzed reactions, see: b) P. W. N. M. van Leeu-
wen, P. C. J. Kramer, J. N. H. Reek, P. Dierkes, Chem.
Rev. 2000, 100, 2741; c) P. C. J. Kramer, P. W. N. M. van
Leeuwen, J. N. H. Reek, Acc. Chem. Res. 2001, 34, 895.
[12] See, for example: a) F. Paul, J. Patt, J. F. Hartwig, J.
Am. Chem. Soc 1994; 116, 5969; b) J. F. Hartwig, F.
In a Carousel Tube Reactor (Radley Discovery), Pd2(dba)3
R
(0.0129 g, 0.014 mmol) and Xphos (0.0134, 0.028 mmol)
were stirred at room temperature under argon in 1.0 mL of
dioxane for ten minutes. Then 4-chloroanisole (0.080 g,
0.563 mmol),
N,N-dimethylhydrazine
(0.086 mL,
1.126 mmol), 1 mL of dioxane and NaO-t-Bu (0.0757 g,
0.788 mmol) were added. The reaction mixture was stirred
at 1208C under argon for 6 h. After cooling, the reaction
mixture was diluted with ethyl acetate, washed with
NaHCO3, dried over Na2SO4 and concentrated under re-
duced pressure. The residue was purified by chromatogra-
phy (silica gel, 35 g; n-hexane/ethyl acetate, 80/20 v/v) to
give 3a; yield: 0.083 g (71%); IR (neat): n=3218,
2978 cmÀ1 1H NMR (CDCl3): d=6.89–6.80 (m, 4H), 4.01
;
(bs, 1H), 3.78 (s, 3H), 2.53 (s, 6H); 13C NMR (CDCl3): d=
153.6, 141.7, 115.5, 114.7, 55.8, 47.9; MS: calculated for
C9H14N2O=166.22; MS (m/z) (relative intensity)=166 (M+,
35), 122 (100), 151 (14), 42 (57).155.3, 154.1, 142.6, 139.9,
Adv. Synth. Catal. 2007, 349, 453 – 458
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
457