Journal of the American Chemical Society
Page 6 of 7
(7) Park, Y.; Kim, Y.; Chang, S. Transition Metal-catalyzed C-H
Amination: Scope, Mechanism, and Applications. Chem. Rev. 2017,
117, 9247-9301.
to 51%. This is identical to the yield of 1m under our standard
catalytic conditions (51%).
1
2
3
4
5
6
7
8
9
We propose that selenium bis(imide) is generated by oxida-
tion of the phosphine selenide by PhI(OAc)2/RSO2NH2 and
that phosphine oxide formed in the process (and possibly
phosphine selenide) may coordinate to the bis(imide) under
the reaction conditions (Scheme 5D).52 Coordination of phos-
phine oxide to the selenium bis(imide) is predicted to be mod-
erately exergonic by DFT calculations (G ~ -10 kcal/mol, see
Supporting Information for details) and may help stabilize the
selenium bis(imide) and/or promote its regeneration. Further-
more, these calculations identify a transition state (Gǂ = +18
kcal/mol) for the ene reaction to take place on the adduct A
with simultaneous displacement of the phosphine oxide. We
note that we are unable to rule out the possible intermediacy of
free selenium bis(imide) under the reaction conditions.
(8) Sharma, A.; Hartwig, J. F. Metal-catalysed Azidation of Ter-
tiary C-H Bonds Suitable for Late-stage Functionalization. Nature
2015, 517, 600-604.
(9) Karimov, R. R.; Sharma, A.; Hartwig, J.F. Late Stage Azidation
of Complex Molecules. ACS Cent. Sci. 2016, 2, 715-724.
(10) Huang, X.; Bergsten, T. M.; Groves, J. T. Manganese-
catalyzed Late-stage Aliphatic C-H Azidation. J. Am. Chem. Soc.
2015, 137, 5300-5303.
(11) Clark, J. R.; Feng, K.; Sookezian, A.; White, M. C. Manga-
nese-catalysed Benzylic C(sp3)-H Amination for Late-stage Function-
alization. Nature Chem. 2018, 10, 583-591.
(12) Prier, C. K.; Zhang, R. K.; Buller, A. R.; Brinkmann-Chen, S.;
Arnold, F. H. Enantioselective, Intermolecular Benzylic C-H Amina-
tion Catalysed by an Engineered Iron-haem Enzyme. Nature Chem.
2017, 9, 629-634.
(13) Chiappini, N. D.; Mack, J. B. C.; Du Bois, J. Intermolecular
C(sp3)-H Amination of Complex Molecules. Angew. Chem. Int. Ed.
2018, 57, 4956-4959.
(14) Li, J.; Cisar, J. S.; Zhou, C.-Y.; Vera, B.; Williams, H.; Rodri-
guez, A. D.; Cravatt, B. F.; Romo, D. Simultaneous Structure-activity
Studies and Arming of Natural Products by C-H Amination Reveal
Cellular Targets of Eupalmerin Acetate. Nature Chem. 2013, 5, 510-
517.
(15) Christianson, D. W. Structural Biology and Chemistry of the
Terpenoid Cyclases. Chem. Rev. 2006, 106, 3412-3442.
(16) Bathe, U.; Tissier, A. Cytochrome P450 Enzymes: a Driving
Force of Plant Diterpene Diversity. Phytochemistry 2019, 161, 149-
162.
(17) Abrams, D. J.; Provencher, P. A.; Sorensen, E. J. Recent Ap-
plications of C–H Functionalization in Complex Natural Product
Synthesis. Chem. Soc. Rev. 2018, 47, 8925-8967.
(18) Chen, K.; Baran, P. S. Total Synthesis of Eudesmane Terpenes
by Site-selective C–H Oxidations. Nature 2009, 459, 824-828.
(19) White, M. C.; Zhao, J. Aliphatic C–H Oxidations for Late-
stage Functionalization. J. Am. Chem. Soc. 2018, 140, 13988-14009.
(20) Horn, E. J.; Rosen, B. R.; Chen, Y.; Tang, J.; Chen, K.; East-
gate, M. D.; Baran, P. S. Scalable and Sustainable Electrochemical
Allylic C–H Oxidation. Nature 2016, 533, 77-81.
(21) Ramirez, T. A.; Zhao, B.; Shi, Y. Recent Advances in Transi-
tion Metal-catalyzed sp3 C–H Amination Adjacent to Double Bonds
and Carbonyl Groups. Chem. Soc. Rev. 2012, 41, 931–942.
(22) Liang, C.; Collet, F.; Robert-Peillard, F.; Müller, P.; Dodd, R.
H.; Dauban, P. Toward a Synthetically Useful Stereoselective C-H
Amination of Hydrocarbons. J. Am. Chem. Soc. 2008, 130, 343-350.
(23) Dolan, N. S.; Scamp, R. J.; Yang, T.; Berry, J. F.; Schomaker,
J. M. Catalyst-controlled and Tunable, Chemoselective Silver-
catalyzed Intermolecular Nitrene Transfer: Experimental and Compu-
tational Studies. J. Am. Chem. Soc. 2016, 138, 14658-14667.
(24) Lu, H.; Jiang, H.; Hu, Y.; Wojtas, L.; Zhang, X. P. Chemose-
lective Intramolecular Allylic C-H Amination versus C=C Aziridina-
tion through Co(II)-based Metalloradical Catalysis. Chem. Sci. 2011,
2, 2361-2366.
(25) Li, C.; Kang, K.; Lu, H.; Hu, Y.; Cui, X.; Wojtas, L.; Zhang,
X. P. Catalytic Radical Process for Enantioselective Amination of
C(sp3)-H Bonds. Angew. Chem. Int. Ed. 2018, 57, 16837-16841.
(26) Hu, Y.; Lang, K.; Li, C.; Gill, J. B.; Kim, I.; Lu, H.; Fields, K.
B., Marshall, M.; Cheng, Q.; Cui, X.; Wojtas, L.; Zhang, X. P. Enan-
tioselective Radical Construction of 5-Membered Cyclic Sulfona-
mides by Metalloradical C-H Amination J. Am. Chem. Soc. 2019,
141, 18160-18169.
(27) Lang, K.; Torker, S.; Wojtas, L.; Zhang, X.P. Asymmetric In-
duction and Enantiodivergence in Catalytic Radical C-H Amination
via Enantiodifferentiative H-Atom Abstraction and Stereoretentive
Radical Substitution. J. Am. Chem. Soc. 2019, 141, 12388-12396.
(28) Smith, K.; Hupp, C. D.; Allen, K. L.; Slough, G. A. Catalytic
Allylic Amination versus Allylic Oxidation: A Mechanistic Dichoto-
my. Organometallics 2005, 24, 1747-1755.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
CONCLUSIONS
In conclusion, we have developed a new broadly applicable
selenium-catalyzed allylic C–H amination of alkenes. Alkene
substitution patterns from mono- to tetrasubstituted can be
directly coupled with a wide range of sulfonamides and sulfa-
mates with high, predictable regioselectivity in an operational-
ly simple, metal-free reaction. This reaction has been used to
introduce new C–N bonds in an assortment of terpenoid natu-
ral products, thereby generating a new class of potentially
bioactive products.
ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website.
Experimental procedures, spectral characterizations, and addition-
al data. (PDF)
AUTHOR INFORMATION
Corresponding Author
ACKNOWLEDGMENT
We thank the University of Washington and the National Science
Foundation (CHE-1764450) for funding.
REFERENCES
(1) Berger, F.; Plutschack, M. B.; Riegger, J.; Yu, W.; Speicher, S.;
Ho, M.; Frank, N.; Ritter, T. Site-selective and Versatile Aromatic C–
H Functionalization by Thianthrenation. Nature 2019, 567, 223-228.
(2) Davies, H. M. L.; Manning, J. R. Catalytic C–H Functionaliza-
tion by Metal Carbenoid and Nitrenoid Insertion. Nature 2008, 451,
417-424.
(3) Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krska,
S. W. The Medicinal Chemist’s Toolbox for Late Stage Functionali-
zation of Drug-like Molecules. Chem. Soc. Rev. 2016, 45, 546-576.
(4) Le, C.; Liang, Y.; Evans, R. W.; Li, X; MacMillan, D. W. C.
Selective sp3 C–H Alkylation via Polarity-match-based Cross-
coupling. Nature 2017, 547, 79-83.
(5) Wang, P.; Verma, P.; Xia, G.; Shi, J.; Qiao, J. X.; Tao, S.;
Cheng, P. T. W.; Poss, M. A.; Farmer, M. E.; Yeung, K.-S.; Yu, J.-Q.
Ligand-accelerated Non-directed C–H Functionalization of Arenes.
Nature 2017, 551, 489-493.
(6) Lewis, J. C.; Coelho, P. S.; Arnold, F. H. Enzymatic Function-
alization of Carbon-hydrogen Bonds. Chem. Soc. Rev. 2011, 40,
2003-2021.
ACS Paragon Plus Environment