S. V. Naidu, P. Kumar / Tetrahedron Letters 44 (2003) 1035–1037
1037
Conclusion
hedron 1996, 52, 2187–2192; (c) Mulzer, J.; Brand, C.
Tetrahedron 1986, 42, 5961–5968; (d) He, L.; Byun, H.;
Bittmann, R. J. Org. Chem. 2000, 65, 7618–7626; (e)
Nakamura, T.; Shiozaki, M. Tetrahedron 2001, 57, 9087–
9092; (f) Yoda, H.; Oguchi, T.; Takabe, K. Tetrahedron:
Asymmetry 1996, 7, 2113–2116; (g) Matsumoto, K.;
Ebata, T.; Matsushita, H. Carbohydr. Res. 1995, 279,
93–106; (h) Murakami, T.; Minamikawa, H.; Hato, K.;
Nakahara, Y.; Ogawa, T. Tetrahedron Lett. 1994, 35,
745–748; (i) Nakamura, T.; Shiozaki, M. Tetrahedron
Lett. 1999, 40, 9063–9064; (j) Schmidt, R. R.; Maier, T.
Carbohydr. Res. 1988, 174, 169–179; (k) Martin, C.;
Prunck, W.; Bortolussi, M.; Bloch, R. Tetrahedron:
Asymmetry 2000, 11, 1585–1592.
In summary, a highly enantioselective synthesis of
D-
ribo-C18-phytosphingosine has been achieved from a
readily available carbohydrate precursor by using the
Sharpless asymmetric dihydroxylation procedure. The
concept of double diastereoselection was employed for
the first time on a chiral allylic alcohol in SAD reac-
tion. The merits of this synthesis are high diastereo-
selectivity and high yielding reaction steps. The other
isomer L-lyxo-C18-phytosphingosine can be synthesized
from S-diepoxide using the chiral ligand (DHQ)2PHAL
in the dihydroxylation step and following the reaction
sequence shown above.
7. (a) Pais, G. C. G.; Fernandes, R. A.; Kumar, P. Tetra-
hedron 1999, 55, 13445–13450; (b) Fernandes, R. A.;
Kumar, P. Tetrahedron: Asymmetry 1999, 10, 4349–4356;
(c) Fernandes, R. A.; Kumar, P. Tetrahedron: Asymmetry
1999, 10, 4797–4802; (d) Fernandes, R. A.; Kumar, P.
Eur. J. Org. Chem. 2000, 3447–3449; (e) Pandey, R. K.;
Fernandes, R. A.; Kumar, P. Tetrahedron Lett. 2002, 43,
4425–4426; (f) Fernandes, R. A.; Kumar, P. Tetrahedron
Lett. 2000, 41, 10309–10312.
Acknowledgements
S.V.N. thanks CSIR New Delhi for financial assistance.
We are grateful to Dr. M. K. Gurjar for his support
and encouragement. This is NCL Communication No.
6634.
8. Le Merrer, Y.; Dureault, A.; Greck, C.; Micas-Languin,
D.; Gravier, C.; Depezay, J. C. Heterocycles 1987, 25,
541–548.
9. (a) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B.
Chem. Rev. 1994, 94, 2483–2547; (b) Becker, H.; Sharp-
less, K. B. Angew. Chem., Int. Ed. Engl. 1996, 35, 448–
451.
References
1. For an excellent overview of sphingolipid functions, see:
Merril, A. H., Jr.; Sweeley, C. C. In Biochemistry of
Lipids, Lipoproteins and Membranes; Vance, D. E.;
Vance. J. E., Eds.; Elsevier Science: Amsterdam, 1996;
Chapter 12, pp. 309–339.
10. Zhang, Z.-B.; Wing, Z.-M.; Wang, Y. X.; Liu, H.-Q.; Lei,
G.-X.; Shi, M. J. Chem. Soc., Perkin Trans. 1 2000,
53–57.
2. (a) Oda, T. J. Pharm. Soc. Jpn. 1952, 72, 142–144; (b)
Carter, H. E.; Clemer, W. D.; Lands, W. M.; Muller, K.
L.; Tomizawa, H. H. J. Biol. Chem. 1954, 206, 613–623;
(c) Thorpe, S. R.; Sweeley, C. Biochemistry 1967, 6,
887–897; (d) Dearborn, D. G.; Smith, S.; Korn, E. D. J.
Biol. Chem. 1976, 251, 2976–2982.
11. Spectroscopic data for selected compounds: Compound
6: Colorless oil, [h]2D0=+24.89 (c 0.54, CHCl3); IR (neat):
wmax 3372, 2924, 2853, 2450, 1464 cm−1 1H NMR (200
;
3. (a) Karlsson, K. A. Acta Chem. Scand. 1964, 18, 2395–
2396; (b) Karlsson, K. A. Acta Chem. Scand. 1964, 18,
2397–2398; (c) Karlsson, K. A.; Samuelsson, B. E.; Steen,
G. O. Acta Chem. Scand. 1968, 22, 1361–1364; (d) Baren-
holz, Y.; Gatt, S. Biochem. Biophys. Res. Commun. 1967,
27, 319–324; (e) Takamatsu, K.; Mikami, M.; Kikuchi,
K.; Nozawa, S.; Iwamori, M. Biochim. Biophys. Acta
1992, 1165, 177–182; (f) Okabe, K.; Keenan, R. W.;
Schmidt, G. Biochem. Biophys. Res. Commun. 1968, 31,
137–143; (g) Wertz, P. W.; Miethke, M. C.; Long, S. A.;
Stauss, J. S.; Downing, D. T. J. Invest. Dermatol. 1985,
84, 410–412; (h) Schmidt, R. R. In Liposome Dermatics;
Braun-Falco, O.; Corting, H. C.; Msibach, H. I., Eds.;
Springer: Berlin, 1992; pp. 44–56; (i) Vance, D. E.;
Sweeley, C. C. J. Lipid Res. 1967, 8, 621–630.
4. (a) Carter, H. E.; Galanos, D. S.; Fujino, Y. Can. J.
Biochem. Physiol. 1956, 34, 320–333; (b) Grob, C. A. Rec.
Chem. Progr. 1957, 18, 55–68; (c) Stoffel, W. Chem. Phys.
Lipids 1973, 11, 318–324; (d) Rodd’s Chemistry of Carbon
Compounds, 2nd ed.; Elsevier: Amsterdam, 1983; Vol. 1E,
p. 394.
5. Sisido, K.; Hirowatari, N.; Tamura, H.; Kobata, H.;
Takagisi, M.; Isida, T. J. Org. Chem. 1970, 35, 350–353.
6. (a) Kobayashi, S.; Hayashi, T.; Kawasuji, T. Tetrahedron
Lett. 1994, 35, 9573–9576; (b) Lin, G.; Shi, Z. Tetra-
MHz, CDCl3): l 0.90 (t, J=6 Hz, 3H), 1.26 (m, 26H),
3.80 (dd, J=6, 8 Hz, 1H), 4.19 (d, J=6 Hz, 2H), 4.35 (d,
J=10 Hz, 1H), 4.57 (d, J=10 Hz, 1H), 5.54 (m, 1H),
5.81 (dt, J=6, 16 Hz, 1H), 7.34 (m, 5H); 13C NMR (50
MHz, CDCl3): l 14.07, 22.64, 25.36, 29.36, 29.66, 30.83,
31.90, 31.97, 35.65, 58.92, 63.00, 70.24, 127.36, 127.69,
128.31, 131.66, 132.61, 133.46, 138.12; MS (EI) m/z (%)
374 (M+). Anal. calcd for C25H42O2 (374.60): C, 80.15; H,
11.30. Found: C, 79.95; H, 11.31.
Compound 7a: white solid (mp 77°C); [h]2D0=−7.60
(c 0.86, CHCl3); IR: wmax 3422, 2926, 1458, 1370, 1215,
–
765, 668 cm−1
;
1H NMR (200 MHz, CDCl3): l 0.89 (t,
J=6 Hz, 3H), 1.27–1.30 (m, 26H), 3.32 (br s, 3H), 3.65
(s, 2H), 3.75–3.80 (m, 2H), 3.95–4.10 (m, 1H), 4.62 (s,
2H), 7.34 (m, 5H); 13C NMR (50 MHz CDCl3): l 14.03,
22.60, 25.17, 29.29, 29.62, 29.80, 30.57, 31.86, 65.02,
70.31, 72.77, 72.96, 76.38, 77.00, 77.66, 81.34, 127.80,
127.91 128.42, 138.13; MS (EI) m/z (%) 408 (M+), 393
(M+−15). Anal. calcd for C25H44O4 (408.6): C, 73.48; H,
10.85. Found C, 73.21; H, 10.52.
1
12. The diastereomeric ratio was determined by H and 13C
NMR spectral data.
13. Cha, J. K.; Christ, W. J.; Kishi, Y. Tetrahedron Lett.
1983, 24, 3943–3946.