Organic & Biomolecular Chemistry
Paper
2 For some selected examples, see: (a) W. Ren, Y. Xia, S.-J. Ji,
Y. Zhang, X. Wan and J. Zhao, Org. Lett., 2009, 11, 1841;
(b) Z.-H. Wan, C. D. Jones, D. Mitchell, J. Y. Pu and
T. Y. Zhang, J. Org. Chem., 2006, 71, 826; (c) S. Dayan,
I. Ben-David and S. Rozen, J. Org. Chem., 2000, 65, 8816;
(d) C.-Fu. Xu, M. Xu, Y.-X. Jia and C.-Y. Li, Org. Lett., 2011,
13, 1556; (e) A. Gao, F. Yang, J. Li and Y. Wu, Tetrahedron,
2012, 68, 4950.
J. E. Hofferberth, J. Org. Chem., 2003, 68, 2266;
(d) M. Yokota, M. Toyota and M. Ihara, Chem. Commun.,
2003, 422; (e) H. Xu, S. Gu, W. Chen, D. Li and J. Dou,
J. Org. Chem., 2011, 76, 2448.
7 (a) W. Zhang, W. Xu and C. Kuang, Chin. J. Org. Chem.,
2014, 34, 605; (b) Z. Chen, J. Li, H. Jiang, S. Zhu, Y. Li and
C. Qi, Org. Lett., 2010, 12, 3262; (c) N. Okamoto, Y. Miwa,
H. Minami, K. Takeda and R. Yanada, J. Org. Chem., 2011,
76, 9133; (d) J. Barluenga, M. A. Rodriguez and
P. J. Campos, Synthesis, 1992, 270; (e) J. Barluenga,
M. A. Rodriguez and P. J. Campos, J. Org. Chem., 1990, 55,
3104; (f) J. Barluenga, J. M. Martinez-Gallo, C. Nájera and
M. Yus, J. Chem. Soc., Perkin Trans. 1, 1987, 1017.
8 (a) X.-F. Xia, L.-L. Zhang, X.-R. Song, X.-Y. Liu and
Y.-M. Liang, Chem. Commun., 2013, 49, 1410; (b) X.-F. Xia,
L.-L. Zhang, X.-R. Song, X.-Y. Liu and Y.-M. Liang, Org.
Lett., 2012, 14, 2480; (c) X.-F. Xia, N. Wang, L.-L. Zhang,
X.-R. Song, X.-Y. Liu and Y.-M. Liang, J. Org. Chem., 2012,
77, 9163.
3 (a) B. T. Ngadjui, S. F. Kouam, E. Dongo, G. W. F. Kapche
and B. M. Abegaz, Phytochemistry, 2000, 55, 915;
(b) R. Maurya, R. Singh, M. Deepak, S. S. Handa,
P. P. Yadav and P. K. Mishra, Phytochemistry, 2004, 65, 915;
(c) R. M. Wadkins, J. L. Hyatt, X. Wei, K. J. P. Yoon,
M. Wierdl, C. C. Edwards, C. L. Morton, J. C. Obenauer,
K. Damodaran, P. Beroza, M. K. Danks and P. M. Potter,
J. Med. Chem., 2005, 48, 2906; (d) S. K. Singh, V. Saibaba,
V. Ravikumar, S. V. Rudrawar, P. Daga, C. S. Rao, V. Akhila,
P. Hegde and Y. K. Rao, Bioorg. Med. Chem., 2004, 12, 1881;
(e) J. M. McKenna, F. Halley, J. E. Souness, I. M. McLay,
S. D. Pickett, A. J. Collis, K. Page and I. Ahmed, J. Med.
Chem., 2002, 45, 2173; (f) J. F. Callahan, J. L. Burgess,
9 J. Seayad, A. M. Seayad and C. L. L. Chai, Org. Lett., 2010,
12, 1412.
J. A. Fornwald, L. M. Gaster, J. D. Harling, F. P. Harrington, 10 According to 1H NMR chemical shifts of the acetyl
J. Heer, C. Kwon, R. Lehr, A. Mathur, B. A. Olson,
J. Weinstock and N. J. Laping, J. Med. Chem., 2002, 45, 999.
4 (a) X. Hui, J. Desrivot, C. Bories, P. M. Loiseau, X. Franck,
R. Hocquemiller and B. Figadère, Bioorg. Med. Chem., 2006,
16, 815; (b) X. Li, G. Zhao and W.-G. Cao, Chin. J. Chem.,
protons, the major product was the E-isomer, where
1H NMR chemical shift of OCOCH3 of Z-isomer
products were about 2.2–2.3 ppm, and 1H NMR
chemical shift of OCOCH3 of E-isomer products were about
1.8 ppm.
2006, 24, 1402; (c) S. E. Wolkenberg, D. D. Wisnoski, 11 CCDC 1002379 contains the supplementary crystallo-
W. H. Leister, Y. Wang, Z. Zhao and C. W. Lindsley, Org. graphic data for this paper.
Lett., 2004, 6, 1453; (d) X. Deng and N. S. Mani, Org. Lett., 12 H. Zaimoku, T. Hatta, T. Taniguchi and H. Ishibashi, Org.
2006, 8, 269; (e) A. Herrera, M. Rondon and E. Suarez, Lett., 2012, 14, 6088.
J. Org. Chem., 2008, 73, 3384; (f) M. E. F. Braibante, 13 J. L. Courtneidge, J. Lusztyk and D. Pagé, Tetrahedron Lett.,
H. T. S. Braibante, M. P. Uliana, C. C. Costa and
M. J. Spenazzatto, Braz. Chem. Soc., 2008, 19, 909.
1994, 35, 1003.
14 When R4 was the hydrogen atom, mixtures of anti and syn
addition products were obtained and the E-isomer was the
major product. When R4 was Br or I, due to steric hin-
drance of the halogen atom, only the E-isomer was the
product. When R4 was phenyl, the bridging by iodine must
be weaker and, consequently, the interaction between the
carbon and iodine atoms decreases and then, this atom
will have a higher positive charge density than with less
hindered alkynes. Under these conditions, OAc may inter-
act with the iodine atom because of the greater positive
charge density yielding a syn addition. At the same time,
OAc can also attack to give an anti addition.
5 For some selected examples, see: (a) V. P. Vasil’eva,
I. L. Khalfina, L. G. Karpitskaya and E. B. Merkushev, Zh.
Org. Khim., 1987, 23, 2225; (b) L. G. Karpitskaya,
V. P. Vasil’eva and E. B. Merkushev, Zh. Org. Khim., 1991,
27, 1961; (c) Y. Liu, X. Chen, J. Zhang and Z. Xu, Synlett,
2013, 1371; (d) C.-F. Xu, M. Xu, Y.-X. Jia and C.-Y. Li, Org.
Lett., 2011, 13, 1556; (e) S. Dayan, I. Ben-David and
S. Rozen, J. Org. Chem., 2000, 65, 8816; (f) S. Shi, T. Wang,
W. Yang, M. Rudolph and A. S. K. Hashmi, Chem. – Eur. J.,
2013, 19, 6576; (g) M. E. Jung and G. Deng, Org. Lett., 2014,
16, 2142; (h) Z. F. Al-Rashid, W. L. Johnson, R. P. Hsung,
Y. Wei, P.-Y. Yao, R. Liu and K. Zhao, J. Org. Chem., 2008, 15 (a) D. M. X. Donnelly and M. J. Meegan, in Comprehensive
73, 8780.
Heterocyclic Chemistry, ed. A. R. Katritzky and C. W. Rees,
Pergamon, Oxford, 1984, vol. 4, pp. 657–712; (b) C.-H. Cho,
F. Shi, D.-I. Jung, B. Neuenswander, G. H. Lushington and
R. C. Larock, ACS Comb. Sci., 2012, 14, 403.
6 (a) N. Kutsumura, K. Niwa and T. Saito, Org. Lett., 2010, 12,
3316; (b) C. S. Poss, S. D. Rychnovsky and S. L. Schreiber,
J. Am. Chem. Soc., 1993, 115, 3360; (c) L. A. Paqutte and
This journal is © The Royal Society of Chemistry 2014
Org. Biomol. Chem.