Scheme 1. Synthesis of Pivotal Monomer 5a
Scheme 2. Synthesis of Oligomersa
a Legend: (a) (S)-2-methyl-1-butanol, DIAD, PPh3, THF, 0-20
°C 30 min. (b) FeCl3, N2H4‚H2O, carbon black, CH3OH, 70 °C, 2
h. (c) (1) HCl, CH3CN, H2O, 0 °C; (2) NaNO2, H2O, 0 °C, 30
min; (3) K2CO3, Et2NH, H2O, 0-20 °C, 15 min. (d) PdCl2(PPh3)2,
CuI, TMS-acetylene, TEA, 45 °C, 12 h.
behavior. The few known syntheses of o-PEs have not
reported the framework with side chain substituents and have
discussed difficulties with Sonogashira methods.20-23 This
work is significant because it establishes the utility of known
reactions for preparing new o-PE frameworks that are
soluble. Computational studies suggest that these oligomers
can adopt helical structures as minimum energy conforma-
tions.24 These oligomers are decorated with the (S)-2-methyl-
butoxy side chain to facilitate the study of potential helical
conformations and chiral aggregates.25-27
The synthesis of oligomers involves production of pivotal
monomer 5 (Scheme 1). Scheme 2 shows the cycle of
acetylene deprotection, triazene activation, and Sonogashira
coupling used to produce dimer 8a, trimer 8b, and tetramer
8c. Convergent coupling of appropriate trimer molecules (6b
and 7c) produces hexamer 8d.
a Legend: (a) CH3I, 110 °C, 6 h. (b) K2CO3, CH3OH, THF, rt,
0.25-3 h. (c) PdCl2(PPh3)2, CuI, 6a or 6b, TEA, 45 °C, 12 h.
reduction of the nitro group in the presence of the aryl
iodide.28 In our hands, a traditional method for reducing the
nitro compound (SnCl2) also reduced the aryl iodide, but
alternate conditions gave excellent yield of 3. Formation of
the triazene from aniline 3 requires vigorous mixing to
achieve good yield. The orthogonally protected 5 yields the
two fundamental starting materials, 6a and 7a, for stepwise
oligomer synthesis in separate steps shown in Scheme 2.
Despite the ortho proximity of the triazene and acetylene,
the overall synthesis of 5 proceeds in very good yield.29-32
Elaboration of the monomer to produce a series of
oligomers was carried out in satisfactory yield. The ether
side chain, ortho-diacetylene moieties, and the TMS protect-
ing group are easily able to withstand the triazene depro-
Beginning with the commercially available 3-nitro-4-
iodophenol 1, the synthesis of monomer 5 is notable for the
(17) Nelson, J. C.; Saven, J. G.; Moore, J. S.; Wolynes, P. G. Science
1997, 277, 1793-1796.
(18) Prince, R. B.; Saven, J. G.; Wolynes, P. G.; Moore, J. S. J. Am.
Chem. Soc. 1999, 121, 3114-3121.
(19) Brunsveld, L.; Meijer, E. W.; Prince, R. B.; Moore, J. S. J. Am.
Chem. Soc 2001, 123, 7978-7984.
(20) Grubbs, R. H.; Kratz, D. Chem. Ber. 1993, 126, 149-157.
(21) Orita, A.; Alonso, E.; Yaruva, J.; Otera, J. Synth. Lett. 2000, 1333-
1335.
(22) Orita, A.; Yoshioka, N.; Struwe, P.; Braier, A.; Beckmann, A.; Otera,
J. Chem. Eur. J. 1999, 5, 1355-1363.
(23) Wong, M. S.; Nicoud, J. F. Tetrahedron Lett. 1994, 35, 6113-
6116.
(24) Blatchly, R. A.; Tew, G. N. J. Org. Chem. 2003, submitted for
publication.
(25) Schenning, A.; Jonkheijm, P.; Peeters, E.; Meijer, E. W. J. Am.
Chem. Soc. 2001, 123, 409-416.
(26) Kilbinger, A. F. M.; Schenning, A.; Goldoni, F.; Feast, W. J.; Meijer,
E. W. J. Am. Chem. Soc. 2000, 122, 1820-1821.
(27) LangeveldVoss, B. M. W.; Janssen, R. A. J.; Christiaans, M. P. T.;
Meskers, S. C. J.; Dekkers, H.; Meijer, E. W. J. Am. Chem. Soc. 1996,
118, 4908-4909.
(28) Clive, D. L. J. J. Org. Chem. 1987, 52, 1339-1342.
(29) Haley, M. M. Org. Lett. 2000, 2, 969-972.
(30) Haley, M. M.; Bell, M. L.; Brand, S. C.; Kimball, D. B.; Pak, J. J.;
Wan, W. B. Tetrahedron Lett. 1997, 38, 7483-7486.
(31) Haley, M. M.; Bell, M. L.; English, J. J.; Johnson, C. A.; Weakley,
T. J. R. J. Am. Chem. Soc. 1997, 119, 2956-2957.
(32) Bell, M. L.; Chiechi, R. C.; Johnson, C. A.; Kimball, D. B.; Matzger,
A. J.; Wan, W. B.; Weakley, T. J. R.; Haley, M. M. Tetrahedron 2001, 57,
3507-3520.
3298
Org. Lett., Vol. 5, No. 18, 2003