Page 5 of 7
Journal of the American Chemical Society
(7) (a) Mazuela, J.; Verendel, J. J.; Coll, M.; Schäffner, B.; Börner,
Qi-Lin Zhou − State Key Laboratory and Institute of Elemento-
Organic Chemistry, College of Chemistry, Nankai University,
Tianjin 300071, China; orcid.org/0000-0002-4700-3765; Email:
A.; Andersson, P. G.; Pàmies, O.; Diéguez, M. Iridium Phosphite-
Oxazoline Catalysts for the Highly Enantioselective Hydrogenation of
Terminal Alkenes. J. Am. Chem. Soc. 2009, 131, 12344–12353. (b)
Mazuela, J.; Norrby, P.-O.; Andersson, P. G.; Pàmies, O.; Diéguez, M.
Pyranoside Phosphite-Oxazoline Ligands for the Highly Versatile and
Enantioselective Ir-Catalyzed Hydrogenation of Minimally
Functionalized Olefins. A Combined Theoretical and Experimental
Study. J. Am. Chem. Soc. 2011, 133, 13634–13645. (c) Besset, T.;
Gramage-Doria, R.; Reek, J. N. H. Remotely Controlled Iridium-
Catalyzed Asymmetric Hydrogenation of Terminal 1,1-Diaryl Alkenes.
Angew. Chem. Int. Ed. 2013, 52, 8795–8797.
1
2
3
4
5
6
7
8
Author
Liang-Liang Yang − State Key Laboratory and Institute of
Elemento-Organic Chemistry, College of Chemistry, Nankai
University, Tianjin 300071, China
Declan Evans − Department of Chemistry and Biochemistry,
University of California, Los Angeles, California 90095-1569,
USA
Bin Xu − State Key Laboratory and Institute of Elemento-Organic
Chemistry, College of Chemistry, Nankai University, Tianjin
300071, China
Wen-Tao Li − State Key Laboratory and Institute of Elemento-
Organic Chemistry, College of Chemistry, Nankai University,
Tianjin 300071, China
9
(8) Wiest, J. M.; Conner, M. L.; Brown, M. K. Allenoates in
Enantioselective [2+2] Cycloadditions: From a Mechanistic Curiosity
to a Stereospecific Transformation. J. Am. Chem. Soc. 2018, 140,
15943–15949.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(9) For a review, see: Mohr, J. T.; Hong, A. Y.; Stoltz, B. M.
Enantioselective Protonation. Nat. Chem. 2009, 1, 359–369. For
representative examples, see: (a) Kainz, Q. M.; Matier, C. D.;
Bartoszewicz, A.; Zultanski, S. L.; Peters, J. C.; Fu, G. C. Asymmetric
Copper-Catalyzed C−N Cross-Couplings Induced by Visible Light.
Science 2016, 351, 681–684. (b) Zhang, W.; Wang, F.; McCann, S. D.;
Wang, D.; Chen, P.; Stahl, S. S.; Liu, G. Enantioselective Cyanation of
Benzylic C−H Bonds via Copper-Catalyzed Radical Relay. Science
2016, 353, 1014–1018. (c) Wendlandt, A. E.; Vangal, P.; Jacobsen, E.
N. Quaternary Stereocentres via an Enantioconvergent Catalytic SN1
Reaction. Nature 2018, 556, 447–451.
Mao-Lin Li − State Key Laboratory and Institute of Elemento-
Organic Chemistry, College of Chemistry, Nankai University,
Tianjin 300071, China
Notes
(10) (a) Legros, J.-Y.; Fiaud, J.-C. Electronic Control of
Enantioselectivity in the Palladium-Catalyzed Asymmetric Allylic
Substitution of trans 4-tButyl-1-vinylcyclohexyl Benzoates.
Tetrahedron 1994, 50, 465–474.; (b) Corey, E. J.; Helal, C. J. Novel
Electronic Effects of Remote Substituents on the Oxazaborolidine-
Catalyzed Enantioselective Reduction of Ketones. Tetrahedron Lett.
1995, 36, 9153–9156.(c) Zhang, H.; Xue, F.; Mak, T. C. W.; Chan, K.
S. Enantioselectivity Increases with Reactivity: Electronically
Controlled Asymmetric Addition of Diethylzinc to Aromatic
Aldehydes Catalyzed by a Chiral Pyridylphenol. J. Org. Chem. 1996,
61, 8002–8003.(d) Wong, H. L.; Tian, Y.; Chan, K. S. Electronically
Controlled Asymmetric Cyclopropanation Catalyzed by a New Type
of Chiral 2,2’-Bipyridine. Tetrahedron Lett. 2000, 41, 7723–7726.
(11) Werlé, C.; Goddard, R.; Philipps, P.; Farès, C.; Fürstner, A.
Structures of Reactive Donor/Acceptor and Donor/Donor Rhodium
Carbenes in the Solid State and Their Implications for Catalysis. J. Am.
Chem. Soc. 2016, 138, 3797–3805.
(12) For reviews, see: (a) Zhu, S.-F.; Zhou, Q.-L. Transition-Metal-
Catalyzed Enantioselective Heteroatom-Hydrogen Bond Insertion
Reactions. Acc. Chem. Res. 2012, 45, 1365–1377. (b) Keipour, H.;
Carreras, V.; Ollevier, T. Recent Progress in the Catalytic Carbene
Insertion Reactions into the Silicon−Hydrogen Bond. Org. Biomol.
Chem. 2017, 15, 5441–5456.
(13) (a) Soldi, C.; Lamb, K. N.; Squitieri, R. A.; González-López,
M.; Di Maso, M. J.; Shaw, J. T. Enantioselective Intramolecular C−H
Insertion Reactions of Donor–Donor Metal Carbenoids. J. Am. Chem.
Soc. 2014, 136, 15142–15145.
(14) For representative examples, see: (a) Davies, H. M. L.; Hansen,
T.; Rutberg, J.; Bruzinski, P. R. Rhodium(II) (S)-N-
(Arylsulfonyl)prolinate Catalyzed Asymmetric Insertion of Vinyl- and
Phenylcarbenoids into the Si−H Bond. Tetrahedron Lett. 1997, 38,
1741–1744. (b) Zhang, Y.-Z.; Zhu, S.-F.; Wang, L.-X.; Zhou, Q.-L.
Copper-Catalyzed Highly Enantioselective Carbenoid Insertion into
Si–H Bonds. Angew. Chem. Int. Ed. 2008, 47, 8496–8498. (c)
Yasutomi, Y.; Suematsu, H.; Katsuki, T. Iridium(III)-Catalyzed
Enantioselective Si−H Bond Insertion and Formation of an
Enantioenriched Silicon Center. J. Am. Chem. Soc. 2010, 132, 4510–
4511. (d) Chen, D.; Zhu, D.-X.; Xu, M.-H. Rhodium(I)-Catalyzed
Highly Enantioselective Insertion of Carbenoid into Si−H: Efficient
Access to Functional Chiral Silanes. J. Am. Chem. Soc. 2016, 138,
1498–1501. (e) Hyde, S.; Veliks, J.; Liégault, B.; Grassi, D.; Taillefer,
M.; Gouverneur, V. Copper-Catalyzed Insertion into Heteroatom-
Hydrogen Bonds with Trifluorodiazoalkanes. Angew. Chem. Int. Ed.
2016, 55, 3785–3789.
The authors declare no competing interests.
ACKNOWLEDGMENT
We thank the National Natural Science Foundation of China
(21625204, 21790332, 21532003, 21971119), the “111” project
(B06005) of the Ministry of Education of China, and the National
Program for Special Support of Eminent Professionals, the
National Science Foundation of the USA (CHE-176328 to KNH)
and the National Institute of Health (T32GM008496 to DE) for
financial support.
REFERENCES
(1) Nicolaou, K. C.; Montagnon, T. Molecules that Changed the
World; Wiley-VCH, Weinheim, 2008.
(2) Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. Comprehensive
Asymmetric Catalysis I–III Vol. 1, Springer, Verlag Berlin Heidelberg,
1999.
(3) For reviews, see: (a) Desimoni, G.; Faita, G.; Jørgensen, K. A.
C2-Symmetric Chiral Bis(oxazoline) Ligands in Asymmetric
Catalysis. Chem. Rev. 2011, 111, PR284–PR437. (b) Parmar, D.;
Sugiono, E.; Raja, S.; Rueping, M. Complete Field Guide to
Asymmetric BINOL-Phosphate Derived Brønsted Acid and Metal
Catalysis: History and Classification by Mode of Activation; Brønsted
Acidity, Hydrogen Bonding, Ion Pairing, and Metal Phosphates. Chem.
Rev. 2014, 114, 9047–9153. (c) Shaw, S.; White, J. D. Asymmetric
Catalysis Using Chiral Salen−Metal Complexes: Recent Advances.
Chem. Rev. 2019, 119, 9381–9426.
(4) Walsh, P. J.; Kozlowski, M. C. Fundamentals of Asymmetric
Catalysis; University Science Books: Sausalito, CA, 2008.
(5) Touge, T.; Nara, H.; Fujiwhara, M.; Kayaki, Y.; Ikariya, T.
Efficient Access to Chiral Benzhydrols via Asymmetric Transfer
Hydrogenation of Unsymmetrical Benzophenones with Bifunctional
Oxo-Tethered Ruthenium Catalysts. J. Am. Chem. Soc. 2016, 138,
10084–10087.
(6) (a) Jiang, Q.; Jiang, Y.; Xiao, D.; Cao, P.; Zhang, X. Highly
Enantioselective Hydrogenation of Simple Ketones Catalyzed by a Rh-
PennPhos Complex. Angew. Chem. Int. Ed. 1998, 37, 1100–1103. (b)
Garbe, M.; Junge, K.; Walker, S.; Wei, Z.; Jiao, H.; Spannenberg, A.;
Bachmann, S.; Scalone, M.; Beller, M. Manganese(I)-Catalyzed
Enantioselective Hydrogenation of Ketones Using a Defined Chiral
PNP Pincer Ligand. Angew. Chem. Int. Ed. 2017, 56, 11237–11241.
ACS Paragon Plus Environment