continues. In this context, use of nitrones as coupling
partners in [3 þ 2] reactions stands out as a powerful method
for the construction of stereodefined heterocycles.8,9 On
this basis, we became interested in the possibility of using
the above-mentioned N-sulfonylketenimine as a suitable
dipolarophile to react with nitrones, and in doing so create
multiple bonds, rings, and stereocenters in a single trans-
formation. Herein, we report a successful execution of this
idea and describe the CuI-catalyzed azideꢀalkyne [3 þ 2]
and ketenimineꢀnitrone [3 þ 2] cycloaddition cascades
(Scheme 1). Significantly, the cycloaddition sequence en-
ables quick construction of heavily functionalized imida-
zolidin-4-ones in high yields with the generation of two
new chiral centers with good diastereoselectivity under
mild reaction conditions.
melanoma,13 in peptidomimetics,14 as chiral auxiliaries for
the synthesis of amino acids,15 as an important chiral
building block in the total synthesis of natural products,16
and, most recently, as successful organocatalysts for a
variety of asymmetric reactions.17
Table 1. Optimization of Reaction Conditionsa
entry
catalyst
base
TEA
solvent
yield (%)b (syn/anti)c
1
2
3
4
5
6
7
8
9
CuI
DCM
DCM
DCM
DCM
DCM
DCM
THF
78 (28:72)
CuCl
TEA
71 (27:73)
CuIꢀY
Cu/Al-HT
CuIꢀY
CuIꢀY
CuIꢀY
CuIꢀY
CuIꢀY
TEA
85 (24:76)
Scheme 1. Copper(I)-Catalyzed AzideꢀAlkyne/Ketenimineꢀ
Nitrone Cycloaddition Cascades to Imidazolidin-4-ones
TEA
trace
63
DIPEA
pyridine
TEA
48
60
TEA
MeCN
Toluene
52
TEA
49
a Reaction conditions: Sulfonyl azide (1 mmol), alkyne (1 mmol),
nitrone (1 mmol), TEA (1.2 mmol), catalyst (20 mg), solvent (2 mL), rt,
N2, 3 h. b Isolated yield. c Diastereomeric ratio (syn/anti) was determined
by 1H NMR.
In addition, imidazolidin-4-ones, and compounds of similar
structures, constitute a widespread structural motif in natural
products and pharmaceuticals.10 Imidazolidin-4-one deri-
vatives have shown wide range of biological activities,11
such as antimalarial activity,12 antiproliferative activity for
The copper(I)-catalyzed cascade process was standard-
ized with tosyl azide 1a, phenylacetylene 2a, and C-4-
chlorophenyl-N-phenyl nitrone 3a in the presence of CuI
and triethylamine (TEA) under N2 atmosphereindichloro-
methane (DCM). Instead of the anticipated oxadiazolidine
(structure B, Schemes 1 and 4), to our surprise, the rear-
ranged product namely imidazolidin-4-one was obtained in
(5) For recent reviews, see: (a) Lu, P.; Wang, Y.-G. Synlett 2010, 165–
173. (b) Yoo, E. J.; Chang, S. Curr. Org. Chem. 2009, 13, 1766–1776. For
individual papers, see: (c) Cassidy, M. P.; Raushel, J.; Fokin, V. V.
Angew. Chem., Int. Ed. 2006, 45, 3154–3157. (d) Whiting, M.; Fokin,
V. V. Angew. Chem., Int. Ed. 2006, 45, 3157–3161. (e) Shang, Y.; Ju, K.;
He, X.; Hu, J.; Yu, S.; Zhang, M.; Liao, K.; Wang, L.; Zhang, P. J. Org.
Chem. 2010, 75, 5743–5745. (f) Chen, Z.; Zheng, D.; Wu, J. Org. Lett.
2011, 13, 848–851. (g) Yao, W.; Pan, L.; Zhang, Y.; Wang, G.; Wang, X.;
Ma, C. Angew. Chem., Int. Ed. 2010, 49, 9210–9214. (h) Li, S.; Luo, Y.;
Wu, J. Org. Lett. 2011, 13, 3190. (i) Li, S.; Luo, Y.; Wu, J. Org. Lett.
2011, 13, 4312–4315.
(6) (a) Bae, I.; Han, H.; Chang, S. J. Am. Chem. Soc. 2005, 127, 2038–
2039. (b) Cho, S. H.; Yoo, E. J.; Bae, I.; Chang, S. J. Am. Chem. Soc.
2005, 127, 16046–16047. (c) Yoo, E. J.; Bae, I.; Cho, S. H.; Han, H.;
Chang, S. Org. Lett. 2006, 8, 1347–1350. (d) Cho, S. H.; Chang, S.
Angew. Chem., Int. Ed. 2007, 46, 1897–1900. (e) Cho, S. H.; Chang, S.
Angew. Chem., Int. Ed. 2008, 47, 2836–2839. (f) Yoo, E. J.; Chang, S.
Org. Lett. 2008, 10, 1163–1166. (g) Kim, J.; Lee, S. Y.; Lee, J.; Do, Y.;
Chang, S. J. Org. Chem. 2008, 73, 9454–9457. (h) Husmann, R.; Na,
Y. S.; Bolm, C.; Chang, S. Chem. Commun. 2010, 46, 5494–5496.
(7) (a) Cui, S. L.; Lin, X. F.; Wang, Y. G. Org. Lett. 2006, 8, 4517–
4520. (b) Cui, S. L.; Wang, J.; Wang, Y. G. Org. Lett. 2007, 9, 5023–5025.
(c) Cui, S. L.; Wang, J.; Wang, Y. G. Org. Lett. 2008, 10, 1267–1269. (d)
Lu, W.; Song, W. Z.; Hong, D.; Lu, P.; Wang, Y. G. Adv. Synth. Catal.
2009, 351, 1768–1772. (e) Song, W. Z.; Lu, W.; Wang, J.; Lu, P.; Wang,
Y. G. J. Org. Chem. 2010, 75, 3481–3483. (f) Jin, H.; Xu, X.; Gao, J.;
Zhong, J.; Wang, Y. G. Adv. Synth. Catal. 2010, 352, 347–350. (g) Song,
W. Z.; Lei, M.; Shen, Y.; Cai, S.; Lu, W.; Lu, P.; Wang, Y. G. Adv. Synth.
Catal. 2010, 352, 2432–2436. (h) Wang, J.; Wang, J.; Zhu, Y.; Lu, P.;
Wang, Y. G. Chem. Commun. 2011, 47, 3275–3277.
(9) (a) Ganton, M. D.; Kerr, M. A. J. Org. Chem. 2004, 69, 8554–
8557. (b) Karadeolian, A.; Kerr, M. A. J. Org. Chem. 2007, 72, 10251–
1ꢀ253. (c) Sibi, M. P.; Ma, Z.; Jasperse, C. P. J. Am. Chem. Soc. 2005,
127, 5764–5765. (d) Kang, Y.-B.; Sun, X.-L.; Tang, Y. Angew. Chem.,
Int. Ed. 2007, 46, 3918–3921. (e) Brandi, A.; Cardona, F.; Cicchi, S.;
Cordero, F. M.; Goti, A. Chem.;Eur. J. 2009, 15, 7808–7821. (f)
Stephens, B. E.; Liu, F. J. Org. Chem. 2009, 74, 254–263. (g) Liu, F.;
Yu, Y.; Zhang, J. Angew. Chem., Int. Ed. 2009, 48, 5505–5508. (h) Shing,
T. K. M.; So, K. H. Org. Lett. 2011, 13, 2916–2919.
(10) (a) Schneider, G.; Fechner, U. Nat. Rev. Drug Discovery 2005, 4,
649–663. (b) Mhaske, S. B.; Argade, N. P. Tetrahedron 2006, 62, 9787–
9826.
(11) Vale, N.; Collins, M. S.; Gut, J.; Ferraz, R.; Rosenthal, P. J.;
Cushion, M. T.; Moreira, R.; Gomes, P. Bioorg. Med. Chem. Lett. 2008,
18, 485–488.
(12) Arajo, M. J.; Bom, J.; Capela, R.; Casimiro, C.; Chambel, P.;
Gomes, P.; Iley, J.; Lopes, F.; Morais, J.; Moreira, R.; de Oliveira, E.; do
Rosario, V.; Vale, N. J. Med. Chem. 2005, 48, 888–892.
(13) Chen, J.; Wang, Z.; Lu, Y.; Dalton, J. T.; Miller, D. D.; Li, W.
Bioorg. Med. Chem. Lett. 2008, 18, 3183–3187.
(14) Rinnova, M.; Nefzi, A.; Houghten, R. A. Tetrahedron Lett.
2002, 43, 2343–2346.
(15) (a) Baldwin, S. W.; Long, A. Org. Lett. 2004, 6, 1653–1656. (b)
Polt, R.; Seebach, D. J. Am. Chem. Soc. 1989, 111, 2622–2632.
(16) Hughes, C. C.; Trauner, D. Angew. Chem. 2002, 114, 4738–4741.
Angew. Chem., Int. Ed. 2002, 41, 4556–4559.
(8) (a) For pioneering contributions, see: (a) Huisgen, R. Angew.
Chem., Int. Ed. Engl. 1963, 2, 565–598. For early reviews on nitrones,
see:(b) Hamer, J.; Macaluso, A. Chem. Rev. 1964, 64, 473–495. (c)
Tufariello, J. J. In 1,3-Dipolar Cycloaddition Chemistry, Vol. 2; Padwa,
A., Ed.; Wiley: New York, 1984; pp 83ꢀ168.
(17) (a) Quellet, S. J.; Tuttle, J. B.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2005, 127, 32–33. (b) Zhang, Y.; Zhao, L.; Lee, S. S.; Ying, J. Y.
Adv. Synth. Catal. 2006, 348, 2027–2032.
Org. Lett., Vol. 13, No. 21, 2011
5729