1328
K. Miyawaki et al.
LETTER
(5) (a) We term caldarchaeol with a parallel arrangement of
In conclusion, the synthetic strategy that highlights both
the selective deprotection of compound 4 and cross-coup-
ling of intermediates 11 and 12 should permit the efficient
construction of chiral cyclobolaphiles and the diastere-
omer having two diacetylenes. This strategy also could be
wide applicable to the synthesis of the analogous com-
pounds. Work is currently in progress to develop their
self-assemblies and will be reported elsewhere.
glycerol units ‘parallel caldarchaeol’, and that with an
antiparallel arrangement ‘antiparallel caldarchaeol’:
Gräther, O.; Arigoni, D. J. Chem. Soc., Chem. Commun.
1995, 405. (b) Nishihara, M.; Morii, H.; Koga, Y. J.
Biochem. 1987, 101, 1007.
(6) Intense examination of macrocyclic synthetic methods that
have been previously reported indicates that only our
strategy has the potential to provide three stereoisomers of
parallel cyclobolaphiles that contain diacetylene units (see
Ref.1c,d,2).
Acknowledgement
(7) Qin, D.; Byun, H.; Bittman, R. J. Am. Chem. Soc. 1999, 121,
662.
(8) Carvalho, J. F.; Prestwich, G. D. J. Org. Chem. 1984, 49,
1251.
(9) Hirth, G.; Barner, R. Helv. Chim. Acta 1982, 65, 1059.
(10) Oikawa, Y.; Yoshioka, T.; Yonemitsu, O. Tetrahedron Lett.
1982, 23, 885.
We are grateful to S. Shibasaki and M. Usui (the Technical Center,
AIST) for valuable technical assistance. This research was suppor-
ted by Industrial Technology Research Grant Program in 2001 from
New Energy and Industrial Technology Development Organization
(NEDO) of Japan.
(11) All new compounds gave satisfactory analytical and spectral
data. Selected physical data are as follows: 4: Stage yellow
oil, Rf = 0.55 [hexane/ethyl acetate (2:1, v/v)], [ ]D28 –1.67
(c 0.24, CHCl3). 1H NMR (500 MHz, CDCl3): = 7.45–7.39
(m, 12 H), 7.27–7.19 (m, 18 H), 7.16 (d, J = 8.8 Hz, 4 H),
6.81 (d, J = 8.5 Hz, 4 H), 4.44 (d, J = 11.6 Hz, 2 H), 4.40 (d,
J = 11.9 Hz, 2 H), 3.77 (s, 6 H), 3.56–3.49 (m, 10 H), 3.17
(d, J = 4.6 Hz, 4 H), 2.19 (t, J = 7.2 Hz, 4 H), 1.56–1.44 (m,
8 H), 1.34–1.24 (m, 16 H) ppm. 13C NMR (100 MHz,
CDCl3): = 159.06, 144.09, 130.48, 129.13, 128.72, 127.70,
126.87, 113.62, 86.48, 78.29, 77.52, 72.87, 70.60, 70.09,
65.22, 63.44, 55.24, 30.06, 29.33, 29.07, 28.82, 28.32,
26.10, 19.17 ppm. Anal. Calcd for C80H90O8: C, 81.46; H,
7.69%. Found: C, 81.43; H, 7.66%. 8: Stage pale yellow oil,
Rf = 0.13 [hexane/ethyl acetate (2:1, v/v)], [ ]D28 –9.80 (c
0.60, CHCl3). 1H NMR (500 MHz, CDCl3): = 3.72–3.48
(m, 18 H), 2.23 (t, J = 6.9 Hz, 8 H), 2.17 (brs, 2 H), 1.65–
1.42 (m, 16 H), 1.40–1.19 (m, 32 H) ppm. 13C NMR (100
MHz, CDCl3): = 78.44, 77.41, 71.60, 71.08, 70.34, 65.31,
62.90, 29.95, 29.46, 29.26, 29.10, 28.93, 28.58, 28.19,
25.93, 19.11 ppm. LRMS (FAB): m/z = 725 [(M + H)+].
Anal. Calcd for C46H76O6: C, 76.20; H, 10.56%. Found: C,
76.19; H, 10.81%. 10: [ ]D28 +9.67 (c 0.30, CHCl3). 15:
[ ]D28 0.00 (c 0.45, CHCl3). (2R,27R)-1: Stage pale yellow
References
(1) (a) Kushwaha, S. C.; Kates, M.; Sprott, G. D.; Smith, I. C. P.
Biochim. Biophys. Acta 1981, 664, 156. (b) Comita, P. B.;
Gagosian, R. B.; Pang, H.; Costello, C. E. J. Biol. Chem.
1984, 254, 15234. (c) Eguchi, T.; Arakawa, K.; Terachi, T.;
Kakinuma, K. J. Org. Chem. 1997, 62, 1924. (d) Eguchi,
T.; Ibaragi, K.; Kakinuma, K. J. Org. Chem. 1998, 63, 2689.
(e) Aoki, T.; Poulter, C. D. J. Org. Chem. 1985, 50, 5634.
(2) (a) Menger, F. M.; Chen, X. Y. Tetrahedron Lett. 1996, 37,
323. (b) Menger, F. M.; Chen, X. F.; Brocchini, S.; Hopkins,
H. P.; Hamilton, D. J. Am. Chem. Soc. 1993, 115, 6600.
(c) Yamauchi, K.; Sakamoto, Y.; Moriya, A.; Yamada, K.;
Hosokawa, T.; Higuchi, T.; Kinoshita, M. J. Am. Chem. Soc.
1990, 112, 3188. (d) Moss, R. A.; Li, J. M. J. Am. Chem.
Soc. 1992, 114, 9227. (e) Fuhrhop, J.-H.; David, H. H.;
Mathieu, L.; Liman, U.; Winter, H. J.; Boekema, E. J. Am.
Chem. Soc. 1986, 108, 1785. (f) Meglio, C. D.; Rananavare,
S. B.; Svenson, S.; Thompson, D. H. Langmuir 2000, 16,
128. (g) Kim, J. M.; Thompson, D. H. Langmuir 1992, 8,
637. (h) Ladika, M.; Fisk, T. E.; Wu, W. W.; Jons, S. D. J.
Am. Chem. Soc. 1994, 116, 12093. (i) Patwarahan, A. P.;
Thompson, D. H. Org. Lett. 1999, 1, 241.
(3) (a) Schnur, J. M. Science 1993, 262, 1669. (b) Spector, M.
S.; Price, R. R.; Schnur, J. M. Adv. Mater. 1999, 11, 337.
(c) Schnur, J. M.; Ratna, B. R.; Selinger, J. V.; Singh, A.;
Jyothi, G.; Easwaran, R. K. Science 1994, 264, 945.
(d) Selinger, J. V.; Schnur, J. M. Phys. Rev. Lett. 1993, 71,
4091. (e) Spector, M. S.; Selinger, J. V.; Singh, A.;
Rodriguez, J. M.; Price, R. P.; Schnur, J. M. Langmuir 1998,
14, 3493.
(4) (a) Amphiphilic molecules containing a polar head group at
the end of a hydrophobic segment have been termed
‘bolaamphiphiles’:Fuhrhop, J.-H.; Mathiewu, J. Angew.
Chem., Int. Ed. Engl. 1984, 23, 100. (b) Also termed
‘bolaphile’: Jayasuriya, N.; Bosak, S.; Regen, S. L. J. Am.
Chem. Soc. 1990, 112, 5844. (c) While amphiphiles having
a macrocyclic ring as a hydrophobic segment have been
termed ‘macrocyclic bolaamphiphiles’ (see Ref.2a), we
prefer to adopt the abbreviated and more readily
28
solid, Rf = 0.1 [CHCl3/MeOH/H2O (65:25:4, v/v/v)]. [ ]D
+5.81 (c 0.75, MeOH). 1H NMR [500 MHz, CDCl3/CD3OD
(97:3, v/v)]: = 4.24 (brs, 4 H), 3.84 (t, J = 5.3 Hz, 4 H),
3.65 (brs, 4 H), 3.58–3.51 (m, 8 H), 3.43–3.37 (m, 6 H), 3.24
(s, 18 H), 2.21 (t, J = 6.7 Hz, 8 H), 1.49–1.43 (m, 16 H),
1.34–1.20 (m, 32 H) ppm. 13C NMR (125 MHz, CD3OD):
= 79.50, 77.97, 72.46, 72.01, 71.49, 67.47, 66.57, 66.20,
60.37, 54.69, 31.21, 30.78, 30.41, 30.24, 29.98, 29.83,
29.58, 27.29, 19.79 ppm. 31P NMR [200 MHz, CDCl3/
CD3OD (99:1, v/v)]: = –0.50 (s)ppm. LRMS (FAB): m/z =
1054 (M+), 995 [(M – (Me)3N)+]. Anal. Calcd for
C56H100N2O12P2·2 H2O: C, 61.63; H, 9.60; N, 2.57%. Found:
C, 61.59; H, 9.43; N, 2.56%. (2S,27S)-1: [ ]D28 –5.77 (c
0.70, MeOH). (2R,27S)-1: [ ]D28 +0.00 (c 0.37, MeOH). The
spectral data of (2R,27S)-1 and (2S,27S)-1 were identical
with those of (2R,27R)-1.
(12) Hansen, W. J.; Murari, R.; Wedmid, Y.; Baumann, W. J.
Lipids 1982, 17, 453.
pronounceable term, ‘cyclobolaphile’.
(13) Alami, M.; Ferri, F. Tetrahedron Lett. 1996, 37, 2763.
Synlett 2002, No. 8, 1326–1328 ISSN 0936-5214 © Thieme Stuttgart · New York