598
M. Grazia Mamolo et al. / Il Farmaco 56 (2001) 593–599
Table 4
Spectral data of compounds 3a–3m
Comp.
3a
3b
3c
R
IR (nujol,
1H NMR (DMSO, TMS) (l)
Mass m/z [M+
]
cm−1
)
H
1647
3.46 (dd, 1H, HA, upfield H of CH2; JAB=18.68 Hz, JAX=5.13 Hz), 3.92 (dd, 1H,
HB, downfield H of CH2; JBA=18.68 Hz, JBX=11.72 Hz), 5.80 (dd, 1H, HX, CH;
328
J
XA=5.13 Hz, JXB=11.72 Hz), 7.25–8.75 (m, 13H, arom. and pyr.)
3.30 (dd, 1H, HA; JAB=18.68 Hz, JAX=5.13 Hz), 3.95 (dd, 1H, HB; JBA=18.68 Hz, 362, 364
BX=11.62 Hz), 6.04 (dd, 1H, HX; JXA=5.13 Hz, JXB=11.62 Hz), 7.13–8.69 (m,
2-Cl
3-Cl
4-Cl
3-Br
3-Br
4-Br
2-F
3-F
4-F
1623
1650
1637
1650
1649
1668
1644
1646
1638
J
12H, arom. and pyr.)
3.40 (dd, 1H, HA; JAB=18.62 Hz, JAX=5.19 Hz), 3.93 (dd, 1H, HB; JBA=18.62 Hz, 362, 364
JBX=11.60 Hz), 5.74 (dd, 1H, HX; JXA=5.19 Hz, JXB=11.60 Hz), 7.0–8.8 (m, 12H,
arom. and pyr.)
3d
3e
3.40 (dd, 1H, HA; JAB=18.62 Hz, JAX=5.19 Hz), 3.90 (dd, 1H, HB; JBA=18.62 Hz, 362, 364
JBX=11.60 Hz), 5.75 (dd, 1H, HX; JXA=5.19 Hz, JXB=11.60 Hz), 7.05–8.8 (m,
12H, arom. and pyr.)
3.30 (dd, 1H, HA; JAB=18.31 Hz, JAX=4.39 Hz), 4.00 (dd, 1H, HB; JBA=18.31 Hz, 406, 408
JBX=11.72 Hz), 6.10 (dd, 1H, HX; JXA=4.39 Hz, JXB=11.72 Hz), 6.85–8.85 (m,
12H, arom. and pyr.)
3f
3.46 (dd, 1H, HA; JAB=18.68 Hz, JAX=4.76 Hz), 3.95 (dd, 1H, HB; JBA=18.68 Hz, 406, 408
JBX=11.72 Hz), 5.75 (dd, 1H, HX; JXA=4.76 Hz, JXB=11.72 Hz), 7.10–8.8 (m,
12H, arom. and pyr.)
3g
3h
3i
3.44 (dd, 1H, HA; JAB=18.68 Hz, JAX=5.13 Hz), 3.94 (dd, 1H, HB; JBA=18.68 Hz, 406, 408
JBX=11.72 Hz), 5.75 (dd, 1H, HX; JXA=5.13 Hz, JXB=11.72 Hz), 7.15–8.80 (m,
12H, arom. and pyr.)
3.47 (dd, 1H, HA; JAB=18.68 Hz, JAX=5.49 Hz), 3.96 (dd, 1H, HB; JBA=18.68 Hz, 346
JBX=12.09 Hz), 5.98 (dd, 1H, HX; JXA=5.49 Hz, JXB=12.09 Hz), 7.15–8.8 (m,
12H, arom. and pyr.)
3.45 (dd, 1H, HA; JAB=18.68 Hz, JAX=5.13 Hz), 3.93 (dd, 1H, HB; JBA=18.68 Hz, 346
JBX=12.09 Hz), 5.77 (dd, 1H, HX; JXA=5.13 Hz, JXB=12.09 Hz), 7.0–8.8 (m, 12H,
arom. and pyr.)
3j
3.42 (dd, 1H, HA; JAB=18.68 Hz, JAX=4.76 Hz), 3.90 (dd, 1H, HB; JBA=18.68 Hz, 346
JBX=11.72 Hz), 5.75 (dd, 1H, HX; JXA=4.76 Hz, JXB=11.72 Hz), 6.90–8.90 (m
12H, arom. and pyr.)
3k
3l
2-CH3 1645
3-CH3 1644
4-CH3 1641
2.50 (s, 3H, CH3), 3.30 (dd, 1H, HA; JAB=18.68 Hz, JAX=4.76 Hz), 3.95 (dd, 1H,
HB; JBA=18.68 Hz, JBX=11.72 Hz), 5.99 (dd, 1H, HX; JXA=4.76 Hz, JXB=11.72
Hz), 7.0–8.94 (m, 12H arom. and pyr.)
2.30 (s, 3H, CH3), 3.43 (dd, 1H, HA; JAB=18.92 Hz, JAX=4.88 Hz), 3.90 (dd, 1H,
HB; JBA=18.92 Hz, JBX=11.60 Hz), 5.74 (dd, 1H, HX; JXA=4.88 Hz, JXB=11.60
Hz), 6.9–8.8 (m, 12H, arom. and pyr.)
2.30 (s, 3H, CH3), 3.45 (dd, 1H, HA; JAB=18.68 Hz, JAX=5.13 Hz), 3.90 (dd, 1H,
HB; JBA=18.68 Hz, JBX=11.72 Hz), 5.72 (dd, 1H, HX; JXA=5.13 Hz, JXB=11.72
Hz), 7.0–8.8 (m, 12H, arom. and pyr.)
342
342
342
3m
group in the ortho position on the 3-aryl residue and
the nitrogen atom at the 2-position in the pyrazoline
cycle of these compounds. It will be of interest to verify
if analogous 3,5-diaryl-pyrazoline derivatives without
the ortho-hydroxy substituent on the phenyl ring at the
3-position on the cycle may exhibit antimycobacterial
properties. On the other hand, compounds 3a–3m are
characterized by the presence in the 3-position of the
2-pyridinyl substituent, which can contribute to the
activity. The replacement of the isonicotinoyl group in
compounds 3a–3m with other acyl derivatives may be
important in order to establish the possible significance
of the 2-pyridinyl residue with respect to the antimy-
cobacterial activity. On the basis of these consider-
ations, the synthesis and the antimycobacterial activity
evaluation of new pyrazoline derivatives are now in
progress.
Acknowledgements
The authors would like to thank Dr. M. Cebulec for
the microanalyses. This research was carried out
with the financial support of the Italian MURST
(60%).