Scheme 1. Cook Tryptophan Synthesis
moiety is formed via the palladium-catalyzed heteroannu-
lation chemistry of Larock.6 This process permits functional-
ity at C-6 of the indole product, and it results in the presence
of a triethylsilyl (TES) group at the indole C-2. Thus, the
Cook method would appear to be ideal for our purposes;
however, it suffers from its reliance on a stoichiometric
amount of the Scho¨llkopf chiral auxiliary.7 It occurred to us
that we could rectify this shortcoming of an otherwise useful
protocol by employing the chiral phase-transfer-catalyzed
alkylation of a glycinate Schiff base8 in place of the
diastereoselective alkylation of the Scho¨llkopf reagent.
Although selected examples exist of highly enantioselec-
tive phase-transfer-catalyzed alkylations of glycinate Schiff
bases with propargylic electrophiles,9 we were unsure of the
prospects for obtaining suitable enantioselectivity in our case.
In alkylations of the Scho¨llkopf reagent with TMS-propar-
gylic electrophiles, Cook observed dramatic variations in
diastereoselectivities (2.5:1 to 46:1) with respect to the
leaving group. The propargyl bromide provided the lowest
levels of selectivity, and the analogous diphenyl phosphate
delivered the best results.5 Additionally, Ley’s chiral glycine
equivalent affords high levels of diastereoselectivity (g10:
1) in alkylations with several electrophiles but gives signifi-
cantly reduced selectivity (3:1) with propargyl bromide.10
With these results in mind, we initiated a study of the
Figure 2. Phase-transfer catalysts surveyed.
enantioselective alkylation of glycinate Schiff base 611 with
TES-propargyl bromide (7a) using chiral phase-transfer
catalysts 2-5 (Figure 2, Table 1).
Table 1. Phase-Transfer-Catalyzed Alkylation of 6 with 7aa
catalyst
conditionsb
yield (%)
ee (%)c
2
3
4
5
A
B
C
D
65
54
80
80
79d
84
81
90
(4) (a) Wang, W.; Xiong, C.; Zhang, J.; Hruby, V. J. Tetrahedron 2002,
58, 3101. (b) Yokoyama, Y.; Osanai, K.; Mitsuhashi, M.; Kondo, K.;
Murakami, Y. Heterocycles 2001, 55, 653. (c) Drury, W. J., III; Ferraris,
D.; Cox, C.; Young, B.; Lectka, T. J. Am. Chem. Soc. 1998, 120, 11006.
(d) Zembower, D. E.; Ames, M. M. Synthesis 1994, 1433. (e) Lee, M.;
Phillips, R. S. Bioorg. Med. Chem. Lett. 1992, 2, 1563. (f) Sato, K.;
Kozikowski, A. P. Tetrahedron Lett. 1989, 30, 4073.
a Data are the average of two runs. b A: 0.01 equiv of 2, toluene-50%
aq KOH 3.25:1, 0 °C, 1 h. B: 0.1 equiv of 3, 10 equiv of CsOH‚H2O,
CH2Cl2, -78 °C, 22 h. C: 0.04 equiv of 4, (toluene/CHCl3 7:3)-50% aq
KOH 3:1, 0 °C, 3 h. D: 0.1 equiv 5, (toluene/CHCl3 7:3)-50% aq KOH
3:1, 0 °C, 2 h. 5 equiv of 7a was used in all cases. c Determined by HPLC
(Chiralcel OD-H, 99.8:0.2 hexanes:i-PrOH, 1 mL/min). d ent-8 was obtained.
(5) Ma, C.; Liu, X.; Li, X.; Flippen-Anderson, J.; Yu, S.; Cook, J. M. J.
Org. Chem. 2001, 66, 4525.
(6) Larock, R. C.; Yum, E. K. J. Am. Chem. Soc. 1991, 113, 6689.
(7) Scho¨llkopf, U.; Groth, U.; Deng, C. Angew. Chem., Int. Ed. Engl.
1981, 20, 798. The precursor to the antipode of the Scho¨llkopf reagent
necessary for the preparation of natural amino acids, (R)-(-)-3-isopropyl-
2,5-piperazinedione, is available from Aldrich at a cost of $34.80/g.
Alternatively, the reagent can be synthesized via a four-step procedure5
employing the pulmonary toxin phosgene.
In this survey of catalysts for the preparation of propargyl
glycine 8 from 6 and 7a, we employed the optimized reaction
conditions reported for each catalyst. Our suspicions were
confirmed, as BINOL-derived catalyst 29b and cinchonidine-
derived catalysts 39a and 49c all delivered 8 in moderate ee.
(8) O’Donnell, M. J. Aldrichim. Acta 2001, 34, 3.
(9) (a) Corey, E. J.; Xu, F.; Noe, M. C. J. Am. Chem. Soc. 1997, 119,
12414. (b) Ooi, T.; Kameda, M.; Maruoka, K. J. Am. Chem. Soc. 2003,
125, 5139. (c) Park, H.-g.; Jeong, B.-S.; Yoo, M.-S.; Lee, J.-H.; Park, M.-
k.; Lee, Y.-J.; Kim, M.-J.; Jew, S.-s. Angew. Chem., Int. Ed. 2002, 41,
3036. (d) Jew, S.-s.; Yoo, M.-S.; Jeong, B.-S.; Park, I.-Y.; Park, H.-g. Org.
Lett. 2002, 4, 4245. (e) Park, H.-g.; Jeong, B.-S.; Yoo, M.-S.; Lee, J.-H.;
Park, B.-s.; Kim, M. G.; Jew, S.-s. Tetrahedron Lett. 2003, 44, 3497.
(10) Dixon, D. J.; Harding, C. I.; Ley, S. V.; Tilbrook, D. M. G. Chem.
Commun. 2003, 468.
3612
Org. Lett., Vol. 5, No. 20, 2003