10.1002/adsc.202000202
Advanced Synthesis & Catalysis
Very Important Publication
COMMUNICATION
trapped by (L*)CuI(CN) to form another copper(II) complex A,[22]
which reacts with TMSCN to give (L*)CuII(CN)2 (B). Finally, the
benzylic radical int-IV is stereoselectively captured by B to yield the
desired product 2 with a high level of enantioselective control. [10a, 11]
Under this mechanistic scenario, owing to the strong binding of
cyanide, copper complex A can be converted to B quickly in the
presence of exogenous cyanide, but also exhibits slower coordination
and deprotonation to give the key intermediate int-I, resulting in a
decrease in overall reaction rate (Figure 2a).
[1] For leading references, see: a) F. F. Fleming, Nat. Prod. Rep. 1999, 16, 597. b) F.
F. Fleming, L. Yao, P. C. Ravikumar, L. Funk, B. C. Shook, J. Med. Chem. 2010, 53,
7902.
[2] For leading references, see: Science of Synthesis; Murahashi, S.-I., Ed.; Georg
Thieme Verlag: Stuttgart, Germany, 2004; Vol. 19.
[3] For leading references, see: a) D. Enders, O. Niemeier, Heterocycles. 2005, 66,
385. b) A. Fryszkowska, K. Fisher, J. M. Gardiner, G. M. Stephens, Org. Biomol.
Chem., 2010, 8, 533.
[4] a) G. M. Sammis, E. N. Jacobsen, J. Am. Chem. Soc. 2003, 125, 4442. b) Y.
Tanaka, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2008, 130, 6072. c) M. Hatano, K.
Yamakawa, K. Ishihara, ACS Catal. 2017, 7, 6686.
[5] a) S. Debarge, P. McDaid, P. OÏNeill, J. Frahill, J. W. Wong, D. Carr, A. Burrell, S.
Davies, M. Karmilowicz, J. Steflik, Org. Process Res. Dev. 2014, 18, 109. b) E.
Brenna, M. Crotti, F. G. Gatti, D. Monti, F. Parmeggiani, R.W. Powell III, S.
Santangelo, J. D. Stewart, Adv. Synth. Catal. 2015, 357, 1849.
[6] J. Choi, G.C. Fu, J. Am. Chem. Soc. 2012, 134, 9102.
[7] For selected examples, see: a) P. P. Das, K. Belmore, J. K. Cha, Angew. Chem. Int.
Ed. 2012, 51, 9517. b) D. G. Kananovich, Y. A. Konik, D. M. Zubrytski, I. Järvinga,
M. Lopp, Chem. Commun., 2015, 51, 8349. c) T. Seiser, T. Saget, D. N. Tran, N.
Cramer, Angew. Chem. Int. Ed. 2011, 50, 7740. d) T. Nishimura, S. Matsumura, Y.
Maeda, S. Uemura, J. Am. Chem. Soc. 2003, 125, 8862. e) T. Seiser, N. Cramer, J. Am.
Chem. Soc. 2010, 132, 5340. f) J. Yang, Q. Sun, N. Yoshikai, ACS Catal. 2019, 9,
1973. g) L. R. Mills, C. H. Zhou, E. Fung, S. A. L. Rousseaux, Org. Lett. 2019, 21,
8805.
[8] For metal-mediated ring-opening of cyclopropanols via a radical process, see: a) K.
Meyer, J. Rocek, J. Am. Chem. Soc. 1972, 94, 1209; b) N. Iwasawa, S. Hayakawa, M.
Funahashi, K. Isobe, K. Narasaka, Bull. Chem. Soc. Jpn. 1993, 66, 819. For recent
catalytic examples, see: c) H. Zhao, X. Fan, J. Yu, C. Zhu, J. Am. Chem. Soc. 2015,
137, 3490; d) R. Ren, H. Zhao, L. Huan, C. Zhu, Angew. Chem., Int. Ed., 2015, 54,
12692; e) R. Ren, Z. Wu, Y. Xu, C. Zhu, Angew. Chem., Int. Ed., 2016, 55, 2866; f) X.
Fan, H. Zhao, J. Yu, X. Bao, C. Zhu, Org. Chem. Front., 2016, 3, 227; g) Y. Wang, S.
Chiba, J. Am. Chem. Soc. 2009, 131, 12570; h) Y. Wang, K. K. Toh, E. P. J. Ng, S.
Chiba, J. Am. Chem. Soc. 2011, 133, 6411; i) A. Ilangovan, S. Saravanakumar, S.
Malayappasamy, Org. Lett. 2013, 15, 4968; j) F. Huang, J. Xie, J. Sun, Y. Wang, X.
Dong, L. Qi, B. Zhang, Org. Lett. 2016, 18, 684; k) S. Ren, C. Feng, T.-P. Loh, Org.
Biomol. Chem. 2015, 13, 5105; l) X.-P. He, Y.-J. Shu, J.-J. Dai, W.-M. Zhang, Y.-S.
Feng, H.-J. Xu, Org. Biomol. Chem., 2015, 13, 7159; m) Y.-S. Feng, Y.-J. Shu, P. C,
T. Xu, H.-J. Xu, Org. Biomol. Chem., 2017, 15, 3590.
[9] For selected reviews, see: a) F. Wang, P. Chen, G. Liu, Acc. Chem. Res. 2018, 51,
2036. b) G. C. Fu, ACS Cent. Sci., 2017, 3, 692. c) U. Jahn, Top. Curr. Chem. 2011,
320, 323. d) Coupling Reactions between sp3 and sp2 carbon centers. In
Comprehensive Organic Synthesis; G. Manolikakes, P. Knochel, G. A. Molander, Eds.;
Elsevier: Amsterdam, 2014; Vol. 3, pp 392. e) Q.-S. Gu, Z.-L. Li, X.-Y. Liu, Acc.
Chem. Res. 2020, 53, 170. For elegant examples, see: f) X.-Y. Dong, Y.-F. Zhang, C.-
L. Ma, Q.-S. Gu, F.-L. Wang, Z.-L. Li, S.-P. Jiang, X.-Y. Liu, Nat. Chem. 2019, 11,
1158. g) Z. Wang, H. Yin, G. C. Fu, Nature 2018, 563, 379. h) N. D. Schley, G. C. Fu,
J. Am. Chem. Soc. 2014, 136, 16588.
[10] For the asymmetric cyanation, see: a) F. Wang, D. Wang, X. Wan, L. Wu, P.
Chen, G. Liu, J. Am. Chem. Soc. 2016, 138, 15547; b) D. Wang, F. Wang, P. Chen, Z.
Lin, G. Liu, Angew. Chem., Int. Ed. 2017, 56, 2054. For the asymmetric arylation, see:
c) L. Wu, F. Wang, X. Wan, D. Wang, P. Chen, G. Liu, J. Am. Chem. Soc. 2017, 139,
2904; d) D. Wang, L. Wu, F. Wang, X. Wan, P. Chen, Z. Lin, G. Liu, J. Am. Chem.
Soc. 2017, 139, 6811; e) L. Wu, F. Wang, P. Chen, G. Liu, J. Am. Chem. Soc. 2019,
141, 1887. f) J. Li, Z. Zhang, L. Wu, W. Zhang, P. Chen, Z. Lin, G. Liu, Nature 2019,
574, 516. For the asymmetric alkynylation, see: g) L. Fu, S. Zhou, X. Wan, P. Chen, G.
Liu, J. Am. Chem. Soc. 2018, 140, 10965. For enantioselective decarboxylative
cyanation, see: h) D. Wang, N. Zhu, P. Chen, Z. Lin, G. Liu, J. Am. Chem. Soc. 2017,
139, 15632.
Scheme 4. Proposed mechanism.
Alternatively, complex int-V could undergo direct hydrogen atom
abstraction of int-V by BzO• to give the key cyclopropoxy radical int-
III (Scheme 4b). To differentiate these two possible pathways (a
versus b in Scheme 4), several substituted aryl acylperoxides were
employed to test the electronic effect of the oxidants, and a small
negative -value (-0.26) was observed from the Hammett plot,
suggesting that complex int-V with an electron-rich ArCO2 group
reacts more rapidly than that with an electron-poor ArCO2 group. We
prefer the pathway in Scheme 4a because the intramolecular
deprotonation of int-V O-H moiety by the inner base ArCO2 (Scheme
4a) should be entropic more favorable. It is also more consistent with
the observed small Hammett ρ-value and relatively small KIE value
(1.6).[23]
In conclusion, we have demonstrated that a copper-catalyzed
radical relay strategy can be successfully applied to enantioselective
ring-opening of cyclopropanols and cyclopropanone acetals. This has
led to a practical and streamlined approach to chiral β-carbonyl nitriles
that are key synthons in organic synthesis. The mechanistic details and
further applications based on this new process are ongoing efforts in
our laboratories.
[11] W. Zhang, F. Wang, S. D. McCann, D. Wang, P. Chen, S. S. Stahl, G. Liu,
Science 2016, 353, 1014.
[12] J. Li, Z. Zhang, L. Wu, W. Zhang, P. Chen, Z. Lin, G. Liu, Nature 2019, 574, 516.
[13] It should be highlighted that Wang and coworkers just reported an elegant
enantioselective cyanation via radical-mediated C–C single bond cleavage of
cyclopentanone (cyclobutanone) oxime ester, please see: T. Wang, Y.-N. Wang, R.
Wang, B.-C. Zhang, C. Yang, Y.-L. Li, X.-S. Wang, Nat. Commun. 2019, 10, 5373.
[14] CCDC 1988457 [(S)-4d] contain the supplementary crystallographic data, which
can be obtained free of charge from the Cambridge Crystallographic Data Centre via
[15] a) K. M. Brown, K. K. Roy, G. H. Hockerman, R. J. Doerksen, D. A. Colby, J.
Med. Chem, 2015, 58, 6336; b) G. Costantino, A. Macchiarulo, A. E. Guadix, R.
Pellicciari, J. Med. Chem. 2001, 44, 1827; c) R. B. Silverman, R. Andruszkiewicz, S.
M. Nanavati, C. P. Taylor, M. G. Vartaniant, J. Med. Chem., 1991, 34, 2298.
[16] a) H. R. Olpe, H. Demiꢀville, V. Baltzer, W. L. Bencze, W. P. Koella, P. Wolf, H.
L. Haas, Eur. J. Pharmacol. 1978, 52, 133; b) N. G. Bowery, Trends Pharmacol. Sci.
1982, 3, 400; c) D. I. B. Kerr, J. Ong, Med. Res. Rev. 1992, 12, 593; d) J. Ong, D. I. S.
Kerr, D. J. Doo-lette, R. K. Duke, K. N. Mewett, R. D. Allen, G. A. R. Johnson, Eur. J.
Pharmacol. 1993, 233, 169; e) C. Shao, H.-J. Yu, N.-Y. Wu, P. Tian, R. Wang, C.-G.
Feng, G.-Q. Lin, Org. Lett. 2011, 13, 788; f) Q.-W. Lang, G.-X. Gu, Y.-T. Cheng, Q.
Yin, X.-M. Zhang, ACS Catal. 2018, 8, 4824; g) F.-Y. Zhang, E. J. Corey, Org. Lett.
2000, 2, 4257.
Acknowledgements
We are grateful for financial support from the National Nature Science
Foundation of China (Nos. 21532009, 21472217, 21790330 and
21728201), the Science and Technology Commission of Shanghai
Municipality (Nos. 17QA1405200 and 17JC1401200), and the
strategic Priority Research Program (No. XDB20000000) and the Key
Research Program of Frontier Science (QYZDJSSW-SLH055) of the
Chinese Academy of Sciences.
Keywords:
asymmetric radical reaction • radical ring-opening •
cyclopropanol • copper-catalyzed radical relay • -carbonyl nitriles
This article is protected by copyright. All rights reserved.