10.1002/anie.201902371
Angewandte Chemie International Edition
Conflict of interest
two steps. In this route, the synthesis of PGF2 1 was completed in
overall 8 steps from (-)-5a with 20% yield. Interestingly, in Corey’s
original synthesis of racemic PGF2, B-V oxidation was first
introduced to construct the bicycliclactone skeleton. This synthesis
thus represents the first example of diastereoselective asymmetric B-
V oxidation applied to the total synthesis of prostaglandins in the past
four decades.[26]
The versatility of this synthesis was further demonstrated in the
synthesis of the other prostaglandins and analogues. Firstly, two
analogs of PGF2, latanoprost (14) and bimatoprost (15), were
synthesized with slightly different procedures. Using lactone diol 3,
the phenyl-substituted lower-side chain was firstly introduced to give
enone 12 in 60% yield in two steps. Then DIP-Cl reduction of enone
12 gave allylic alcohol 13 in 76% yield. From 13, the synthesis of
latanoprost 14 was straightforward and completed in another four
steps in 41% yield. Bimatoprost 15 could also be synthesized from
13 in two more steps with 58% yield. In this way, the PGF family of
prostaglandins were synthesized in overall 8-10 steps from the
lactone (-)-5a with 15-21% yields.
The authors declare no conflict of interest.
REFERENCES
1.
a) I. Dams, J. Wasyluk, M. Prost, A. Kutner, Prostaglandins Other Lipid
Mediators 2013, 109; b) C. D. Funk, Science 2001, 294, 1871; c) F.
Marks, G. Fürstenberger, Prostaglandins, Leukotrienes and other
Eicosanoids; Wiley-VCH: Verlag, New York, 1999; and references
therein; d) K. H. Gibson, Chem. Soc. Rev. 1977, 6, 489.
2. a) H. Peng, F. Chen, Org. Biomol. Chem. 2017, 15, 6281; b) S. Das, S.
Chandrasekhar, J. S. Yadav, R. Grée, Chem. Rev. 2007, 107, 3286; c) P.
W. Collins, S. W. Djuric, Chem. Rev. 1993, 93, 1533.
3. Pfizer reports fourth-quarter and full-year 2010 results; provides 2011
financial guidance and updates 2012 financial targets.
investors/presentations/q4performance_020111.pdf (2011).
4. a) E. J. Corey, X. M. Cheng, The Logic of Chemical Synthesis, Wiley,
New York, 1995; b) E. J. Corey, N. M. Weinshenker, T. K. Schaaf, W.
Huber, J. Am. Chem. Soc. 1969, 91, 5675.
5. a) A. Pelss, N. Gandhamsetty, J. R. Smith, D. Mailhol, M. Silvi, A.
Watson, I. Perez-Powell, S. Prévost, N. Schützenmeister, P. Moore, V.
K. Aggarwal, Chem. Eur. J. 2018, 24, 9542; b) S. Prévost, K. Thai, N.
Schützenmeister, G. Coulthard, W. Erb, V. K. Aggarwal, Org. Lett. 2015,
17, 504; c) G. Coulthard, W. Erb, V. K. Aggarwal, Nature 2012, 489,
278.
6. a) G. Kawauchi, S. Umemiya, T. Taniguchi, K. Monde, Y. Hayashi,
Chem. Eur. J. 2018, 24, 1; b) Y. Hayashi, S. Umemiya, Angew. Chem.
2013, 125, 3534; Angew. Chem. Int. Ed. 2013, 52, 3450.
7. a) K. C. Nicolaou, K. K. Pulukuri, S. Rigol, P. Heretsch, R. Yu, C. I.
Grove, C. R. H. Hale, A. ElMarrouni, V. Tetz, M. Brönstrup, M. Aujay,
J. Sandoval, J. Gavrilyuk, J. Am. Chem. Soc. 2016, 138, 6550; b) K. C.
Nicolaou, P. Heretsch, A. ElMarrouni, C. R. H. Hale, K. K. Pulukuri, A.
K. Kudva, V. Narayan, K. S. Prabhu, Angew. Chem. 2014, 126, 10611;
Angew. Chem. Int. Ed. 2014, 53, 10443.
8. a) J. Egger, S. Fischer, P. Bretscher, S. Freigang, M. Kopf, E. M. Carreira,
Org. Lett. 2015, 17, 4340; b) J. Egger, P. Bretscher, S. Freigang, M. Kopf,
E. M. Carreira, J. Am. Chem. Soc. 2014, 136, 17382.
While no protecting group was needed in the synthesis of PGF2
and its analogues, the other prostaglandins were also accessible using
only one simple protecting group. From enone 10, CBS reduction
followed by TBS-protection of the corresponding allylic alcohol gave
silyl ether 16 in 68% yield in two steps. The following sequential
DIBAL-H reduction, Wittig olefination, and Dess-Martin oxidation
gave TBS-protected PGE2 (17) in 76% yield over three steps.
Compound 17 is a general precursor for the synthesis of PGE2 (18),
PGA2 (19) and PGC2 (20) under slightly different conditions. Using
HF/pyridine in CH3CN solution, desilylation was processed to give
PGE2 18 in 91% yield. With HCl/THF solution, simultaneous
desilylation and dehydration were processed to furnish PGA2 19 in
89% yield. Moreover, using KOH/MeOH and followed by
acidification
with
an
HCl/THF
solution,
sequential
deprotection/dehydration/isomerization gave PGC2 20 in 80% yield.
Thus, the major family of prostaglandins was produced using this
synthetic strategy in overall 8-11 steps with 15-22% yields from the
key intermediate (-)-5a.
9. J. Li, T. S. Ahmed, C. Xu, B. M. Stoltz, R. H. Grubbs, J. Am. Chem. Soc.
2019, 141, 154.
In conclusion, we have successfully developed a collective
synthesis of prostaglandins empowered by stereocontrolled
organocatalytic B-V oxidation of racemic bicyclic cylcobutanones
with H2O2. This synthesis is featuring with 1) the key B-V oxidation
provided a generic intermediate of lactone as a versatile building
block for the synthesis of the entire family of prostaglandins, with
high enantiomeric excess in an environmentally benign fashion, 2)
through a highly selective primary alcohol oxidation strategy, the
synthesis of six prostaglandins was accomplished in 10-13 steps
without or with one simple protecting group. Furthermore, reactivity
and enantioselectivity of organocatalytic B-V oxidation of racemic
bicyclobutanones were evaluated and 90-99% ee were achieved in all
cases. The modularity and expediency of this chemistry thus opens a
new avenue for the synthesis of prostaglandins and lactone-
containing natural products for new drug discoveries.
10. a) S. J. Danishefsky, M. PazCabal, K. Chow, J. Am. Chem. Soc. 1989,
111, 3456; b) G. Stork, P. M. Sher, H. L. Chen, J. Am. Chem. Soc. 1986,
108, 6384.
11. a) A. Baeyer, V. Villiger, Ber. Dtsch. Chem. Ges. 1899, 32, 3625. For
selected reviews, see: b) G.-J ten Brink, I. W. C. E. Arends, R. A.
Sheldon, Chem. Rev. 2004, 104, 4105; c) M. Renz, B. Meunier, Eur. J.
Org. Chem. 1999, 737; d) G. Strukul, Angew. Chem. 1998, 110, 1256;
Angew. Chem. Int. Ed. 1998, 37, 1198; e) G. R. Krow, Org. React. 1993,
43, 251.
12. a) A. Cavarzan, G. Bianchini, P. Sgarbossa, L. Lefort, S. Gladiali, A.
Scarso, G. Strukul, Chem. Eur. J. 2009, 15, 7930; b) S.-I. Murahashi, S.
Ono, Y. Imada, Angew. Chem. 2002, 114, 2472; Angew. Chem. Int. Ed.
2002, 41, 2366; c) T. Shinohara, S. Fujioka, H. Kotsuki, Heterocycles
2001, 55, 237; d) C. Bolm, T. K. K. Luong, G. Schlingloff, Synlett 1997,
1151; e) T. Sugimura, Y. Fujiwara, A. Tai, Tetrahedron Lett. 1997, 38,
6019.
13. a) F. Schulz, F. Leca, F. Hollmann, M. T. Reetz, Beilstein J. Org. Chem.
2005, 1, 10; b) M. Lopp, A. Paju, T. Kanger, T. Pehk, Tetrahedron Lett.
1996, 37, 7583; c) C. Bolm, G. Schlingloff, J. Chem. Soc., Chem.
Commun. 1995, 1247; d) V. Alphand, R. Furstoss, J. Org. Chem. 1992,
57, 1306.
Received: ((will be filled in by the editorial staff))
Published online on ((will be filled in by the editorial staff))
14. A. Watanabe, T. Uchida, R. Irie, T. Katsuki, Proc. Natl. Acad. Sci. 2004,
101, 5737.
15. a) L. Zhou, X. Liu, J. Ji, Y. Zhang, W. Wu, Y. Liu, L. Lin, X. Feng, Org.
Lett. 2014, 16, 3938; b) L. Zhou, X. Liu, J. Ji, Y. Zhang, X. Hu, L. Lin,
X. Feng, J. Am. Chem. Soc. 2012, 134, 17023.
Keywords: Baeyer-Villiger Oxidation, prostaglandins,
organocatalysis, total synthesis.
16. a) S. Xu, Z. Wang, X. Zhang, K. Ding, Eur. J. Org. Chem. 2011, 110;
b) S. Xu, Z. Wang, Y. Li, X. Zhang, H. Wang, K. Ding, Chem. Eur. J.
2010, 16, 3021; c) S. Xu, Z. Wang, X. Zhang, X. Zhang, K. Ding, Angew.
Chem. 2008, 120, 2882; Angew. Chem. Int. Ed. 2008, 47, 2840.
17. J.-H. Xie, Q.-L. Zhou, Acc. Chem. Res. 2008, 41, 581.
ACKNOWLEDGMENT
Dr. Haihui Peng thank Shanghai Pujiang Program (18PJ1401400),
NSFC (21801042) and Fudan University for financial support.
4
This article is protected by copyright. All rights reserved.