ORGANIC
LETTERS
2011
Vol. 13, No. 8
1904–1907
A Simple, Nontoxic Iron System for the
Allylation of Zinc Enolates
Gopala K. Jarugumilli and Silas P. Cook*
Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington,
Indiana 47405-7102, United States
Received January 8, 2011
ABSTRACT
Diiron nonacarbonyl in combination with triphenylphosphine has been identified as a low-cost and environmentally benign catalyst system for the
allylation of zinc enolates generated in situ from copper-catalyzed asymmetric conjugate addition reactions. The catalyst system provides the
allylated product in modest to good yields at room temperature with unprecedented diastereoselectivity in cyclic enone systems. While
triphenylphosphine was uniquely effective among the investigated ligands, the exact nature of the active catalytic species remains unknown.
Allylic nucleofuges typify the more reactive alkyl electro-
philes available to organic chemists today. However, while
allylic alkylation represents one of the more facile carbon-
carbon bond-forming processes, additional control of reac-
tivity and selectivity has been realized through the use of
transition-metal catalysis.1 Although allylic alkylation reac-
tions catalyzed by palladium have been the most thoroughly
investigated, various procedures involving ruthenium,2
iridium,3 molybdenum,4 tungsten,5 copper,6 nickel,7 and
Figure 1. Natural products recently synthesized from
intermediates 5a and 5b (the substructures of which are
iron8 have also been reported. Unfortunately, these pro-
highlighted in red).9
cedures suffer from the use of costly transition metals,2-4
exotic and/or expensive ligands,4,6,7 elevated reaction tem-
peratures,3,5,8 or multistep catalyst preparation.8
New routes to enantiomerically pure carbocyclic ketones
need continued innovation since these compounds function as
important intermediates in the synthesis of biologically rele-
vant molecules. Specifically, building blocks such as 5-7 (see
abstract) have been used in the synthesis of potential drug
candidates and numerous natural products (Figure 1).9 Dur-
ing a recent foray into the synthesis of another natural
product, we sought an inexpensive, simple transition-metal
complex to catalyze allylic alkylations. Early work with iron
catalysts utilized pyrophoric Na[Fe(CO)3(NO)] thatwaslater
(1) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921.
(2) (a) Morisaki, Y.; Kondo, T.; Mitsudo, T. A. Organometallics
1999, 18, 4742. (b) Kondo, T.; Morisaki, Y.; Uenoyama, S.; Wada, K.;
Mitsudo, T. J. Am. Chem. Soc. 1999, 121, 8657. (c) Trost, B. M.; Fraisse,
P. L.; Ball, Z. T. Angew. Chem., Int. Ed. 2002, 41, 1059.
(3) (a) Takeuchi, R.; Shiga, N. Org. Lett. 1999, 1, 265. (b) Bartels, B.;
Helmchen, G. Chem. Commun. 1999, 741.
(4) Trost, B. M.; Dogra, K. J. Am. Chem. Soc. 2002, 124, 7256.
(5) (a) Trost, B. M.; Hung, M.-H. J. Am. Chem. Soc. 1983, 105, 7757.
(b) Trost, B. M.; Hung, M.-H. J. Am. Chem. Soc. 1987, 109, 2176. (c)
Lloyd-Jones, G. C.; Pfaltz, A. Angew. Chem., Int. Ed. 1995, 34, 462.
(6) Persson, E. S. M.; Vanklaveren, M.; Grove, D. M.; Backvall, J. E.;
Vankoten, G. Chem.;Eur. J. 1995, 1, 351.
(9) (a) Schmitt, M. H.; Blechert, S. Angew. Chem., Int. Ed. 1997, 36,
1474. (b) Akashi, M.; Sato, Y.; Mori, M. J. Org. Chem. 2001, 66, 7873.
(c) Dijk, E. W.; Panella, L.; Pinho, P.; Naasz, R.; Meetsma, A.;
Minnaard, A. J.; Feringa, B. L. Tetrahedron 2004, 60, 9687. (d) Bettati,
M.; Churcher, I.; Doughty, V. A.; Harrison, T.; Nizi, E.; Smith, A.
World Patent 2005108362; June 5, 2005.
(7) Didiuk, M. T.; Morken, J. P.; Hoveyda, A. H. J. Am. Chem. Soc.
1995, 117, 7273.
(8) (a) Roustan, J. L.; Merour, J. Y.; Houlihan, F. Tetrahedron Lett.
1979, 39, 3721. (b) Xu, Y.; Zhou, B. J. Org. Chem. 1987, 52, 974. (c)
Zhou, B.; Xu, Y. J. Org. Chem. 1988, 53, 4419.
r
10.1021/ol200059u
Published on Web 03/10/2011
2011 American Chemical Society