280 Letters in Organic Chemistry, 2011, Vol. 8, No. 4
Shen et al.
function of heating, stirring and accelerating the reaction
rate, While magnetic stirring was used in traditional method.
153.87, 126.98, 126.33, 100.43, 56.77, 35.23, 31.59. MS
m/z: Calc. for C14H17NO2 231.1. Found: 232.0 [M+1]+, 233.0
[M+2]+, 254.0 [M+Na]+.
(3-(3-nitrophenyl)isoxazol-5-yl)methanol
Characterization of Products
Entry 8 (1.30g, yield 59%) mp: 90-92oC; 1H NMR (300
MHz, CDCl3) ꢀ ppm 8.62 (s, 1H), 8.46 – 8.22 (m, 1H), 8.22
– 8.05 (m, 1H), 7.66 (s, 1H), 6.67 (s, 1H), 4.87 (d, J = 0.8
Hz, 2H). 13C NMR (125.5 MHz, DMSO) ꢀ ppm 173.97,
159.59, 147.73, 132.27, 130.16, 129.68, 124.01, 120.31,
99.53, 54.27. MS m/z: Calc. for C10H8N2O4 220.0. Found:
221.0 [M+1]+, 222.0 [M+2]+.
(3-phenylisoxazol-5-yl)methanol
Entry 1 (1.22g, yield 70%) mp: 49–50 C; 1H NMR (300
o
MHz, CDCl3) ꢀ ppm, 7.78 (d, J = 3.7 Hz, 2H), 7.44 (d, J =
2.5 Hz, 3H), 6.56 (s, 1H), 4.81 (s, 2H). 13C NMR (125.5
MHz, CDCl3) ꢀ ppm 171.94, 162.50, 130.12, 128.96, 128.78,
126.81, 100.06, 56.57. MS m/z: Calc. for C10H9NO2 175.1.
Found: 175.1 [M]+, 176.1 [M+H]+.
(3-(4-nitrophenyl)isoxazol-5-yl)methanol
(3-(2-chlorophenyl)isoxazol-5-yl)methanol
1
Entry 9 (0.99g, yield 45%) mp: 117-119oC; H NMR
Entry 2 (1.65g, yield 79%) mp: 66-67 oC; H NMR (300
1
(300 MHz, CDCl3) ꢀ ppm 8.37 (dd, J = 28.8, 12.2 Hz, 4H),
6.65 (s, 1H), 4.87 (s, 2H). 13C NMR (125.5 MHz, DMSO) ꢀ
ppm 175.19, 160.75, 135.22, 128.35, 124.77, 100.83, 55.33.
MS m/z: Calc. for C10H8N2O4 220.0. Found: 220.9 [M+1]+,
221.8 [M+2]+.
MHz, CDCl3) ꢀ ppm 7.73 (dd, J = 7.1, 2.2 Hz, 1H), 7.48 (s,
1H), 7.41 – 7.34 (m, 2H), 6.73 (s, 1H), 4.86 (s, 2H). 13C
NMR (125.5 MHz, CDCl3) ꢀ ppm 171.09, 161.13, 132.95,
130.97, 130.45, 128.18, 127.15, 103.37, 56.59. MS m/z: Calc.
for C10H8ClNO2 209.0. Found: 209.9[M]+, 210.9 [M+1]+,
211.9 [M+2]+.
CONCLUSION
(3-(4-chlorophenyl)isoxazol-5-yl)methanol
1
Entry 3 (1.54g, yield 74%) mp: 93-94 oC; H NMR (300
In conclusion, an efficient, ultrasonic-assisted, one-pot
procedure for the direct conversion of aldoxime to (3-
phenylisoxazol-5-yl) methanol derivatives has been
developed. The desired isoxazole derivatives have been
obtained in moderate to excellent overall yields. This
approach provides an ideal synthetic approach for the similar
synthesis of an isoxazole derivatives library. However, we
believe that the operational facility of this method makes it
attractive for preparative applications as well as for the
synthesis of other interesting heterocycles which were
applied in biology and material field, etc, is currently in
progressing in our laboratory.
MHz, CDCl3) ꢀ ppm 7.74 (d, J = 8.7 Hz, 2H), 7.43 (d, J =
8.7 Hz, 2H), 6.54 (s, 1H), 4.83 (s, 2H). 13C NMR (125.5
MHz, CDCl3) ꢀ ppm 172.30, 161.56, 136.21, 129.27, 128.10,
127.29, 99.96, 56.53. MS m/z: Calc. for C10H8ClNO2 209.0.
Found: 209.9 [M] +, 210.9 [M+1]+, 211.9 [M+2]+.
(3-(2-methoxyphenyl)isoxazol-5-yl)methanol
Entry 4 (1.70g, yield 83%) liquid. 1H NMR (300 MHz,
CDCl3) ꢀ ppm 7.80 (dd, J = 7.7, 1.8 Hz, 1H), 7.38 (dd, J =
4.6, 3.7 Hz, 1H), 7.06 – 6.91 (m, 2H), 6.71 (s, 1H), 4.76 (d, J
= 0.6 Hz, 2H), 3.84 (s, 3H). 13C NMR (125.5 MHz, CDCl3) ꢀ
ppm 170.12, 159.10, 156.17, 130.29, 128.31, 119.81, 116.56,
110.47, 102.35, 55.13, 54.41. MS m/z: Calc. for C11H11NO3
205.0. Found: 205.9 [M+1]+, 206.9 [M+2]+, 227.9 [M+Na]+.
REFERENCES
[1]
Kozikowski, A. P. The isoxazoline route to the molecules of nature.
Acc. Chem. Res., 1984, 17, 410.
(3-(4-methoxyphenyl)isoxazol-5-yl)methanol
[2]
Turchi, S.; Giomi, D.; Nesi, R. [2+4] Cycloaddition reactions of 4-
Entry 5 ( 1.53g, yield 75%) mp: 82-83 oC; 1H NMR (300
MHz, CDCl3) ꢀ ppm 7.73 (d, J = 9.0 Hz, 2H), 6.97 (d, J =
8.9 Hz, 2H), 6.50 (s, 1H), 4.80 (d, J = 0.7 Hz, 2H), 3.85 (s,
3H). 13C NMR (125.5 MHz, CDCl3) ꢀ ppm 172.29, 162.51,
161.47, 128.61, 121.63, 114.76, 100.22, 56.86, 55.75. MS
m/z: Calc. for C11H11NO3 205.0. Found: 205.9[M+1]+, 206.9
[M+2]+, 227.9 [M+Na]+.
Nitro-3-phenylisoxazole
with
Carbo-
and
heterodynes.
Tetrahedron., 1995, 51, 7085.
[3]
Ku, Y. Y.; Grieme, T.; Sharma, P.; Pu, Y. M.; Raje, P.; Morton, H.;
King, S. Use of iodoacetylene as a dipolarphile in the synthesis of
5-iodoisoxazole derivatives. Org. Lett., 2001, 3, 4185.
Shang Y.-J.; Wang. Y.-G. Soluble polymer-supported synthesis of
isoxazoles. Tetrahedron Lett., 2002, 43, 2247.
Riess, R.; Schoen, M.; Laschat, S.; Jager, V. Evaluation of
Protecting Groups for 3-Hydroxyisoxazoles - Short Access to 3-
Alkoxyisoxazole-5-carbaldehydes and 3-Hydroxyisoxazole-5-
carbaldehyde, the Putative Toxic Metabolite of Muscimol. Eur. J.
Org. Chem., 1998, 473.
[4]
[5]
(3-(4-hydroxylphenyl)isoxazol-5-yl)methanol
o
1
Entry 6 (1.66g, yield 87%) mp: 136-138 C; H NMR
(300 MHz, DMSO) ꢀ ppm 9.85 (s, 1H), 7.68 (d, J = 8.4 Hz,
2H), 6.88 (s, 1H), 6.85 (s, 1H), 6.77 (d, J = 0.6 Hz, 1H), 5.64
(s, 1H), 4.58 (d, J = 5.9 Hz, 2H). 13C NMR (125.5 MHz,
DMSO) ꢀ ppm 173.65, 161.95, 159.59, 128.59, 119.98,
116.27, 99.94, 55.33. MS m/z: Calc. for C10H9NO3 191.0.
Found: 192.0 [M+1]+, 193.0 [M+2]+.
[6]
[7]
Wittenberger, S. J. An efficient synthesis of the cholinergic channel
activator ABT-418. J. Org. Chem., 1996, 61, 356.
a) Martins, M. A. P.; Flores, A. F. C.; Bastos, G. P.; Sinhorin, A.;
Bonacorso, H. G. A convenient one-pot synthesis of 5-carboxy-
isoxazoles: trichloromethyl group as a carboxyl group precursor.
Tetrahedron Lett. 2000, 41, 293. b) Ziegler, H.; Trah, S.; Zurfluh,
R.; O'Sullivan, A. C. Triazoline and isoxazoline bis-oxime deriva-
tives and their use as pesticides. WO 97/02255, 1997.
Newton, T. W. Preparation of herbicidal isoxazole- and isothiazole-
5-carboxamides. US, 5780393, 1998.
Lautens, M.; Roy, A. Synthetic studies of the formation of oxazoles
and isoxazoles from N-acetoacetyl derivatives: scope and
limitations. Org. Lett., 2000, 2, 555.
(3-(4-tert-butylphenyl)isoxazol-5-yl)methanol
[8]
[9]
Entry 7 ( 1.71g, yield 74%) mp: 48-50oC; 1H NMR (300
MHz, CDCl3) ꢀ ppm 7.73 (d, J = 8.5 Hz, 2H), 7.48 (d, J =
8.5 Hz, 2H), 6.55 (s, 1H), 4.82 (d, J = 0.5 Hz, 2H), 1.35 (s,
9H). 13C NMR (125.5 MHz, CDCl3) ꢀ ppm 172.63, 162.80,