4704
M. Sridhar et al. / Tetrahedron Letters 52 (2011) 4701–4704
LA
O
O
LA
O
O
O
O
H2O
R
R
R
O
LA
-H2O
N
N
NH
R' OH
NHOH
N
R'
R'
LA
O
R
R
R'
O
LA
O
R'
LA= Lewis Acid
-LA
OH
R'
R
N
H2O
LA
N
CH3COOH
R'
OCOCH3
R
Scheme 2. In summary, we have shown an unprecedented microwave-assisted rapid synthesis of oximes in high yields by reaction of carbonyls with acetohydroxamic acid
using BF3ÁOEt2 as a catalyst and methanol as a solvent.
11. Nakayama, A.; Iwamura, H.; Niwa, A.; Nakagawa, Y.; Fujita, T. J. Agric. Food
Chem. 1985, 33, 1034–1041.
12. Ley, J. P.; Bertram, H. J. Eur. J. Lipid Sci. Technol. 2002, 104, 319–323.
13. Kato, M.; Nishino, S.; Ohno, M.; Fukuyama, S.; Kita, Y.; Hirasawa, Y.; Nakanishi,
Y.; Takasugi, H.; Sakane, K. Bioorg. Med. Chem. Lett. 1996, 6, 33–38.
14. Hartmann, R. W.; Hector, M.; Haidar, S.; Ehmer, P. B.; Reichert, W.; Jose, J. J.
Med. Chem. 2000, 43, 4266–4277.
and converts into oxime. The formation of oxime acetate involves
the unusual migration of the acyl group from N to O and the plausi-
ble reaction pathway for conversion of a carbonyl into an oxime via
oxime acetate under Lewis acid (LA) catalysis is shown in Scheme 2.
A similar mechanism is also possible with a Bronsted acid.
15. (a) Beckman, E. Chem. Ber. 1890, 23, 1680–1692; (b) Vogel, A. I. In Text Book of
Practical Organic Chemistry; Longman, 1986. p 1113.
16. (a) Slater, W. K. J. Chem. Soc. 1920, 117, 587–590; (b) Hartung, W. H.; Munch, J.
C. J. Am. Chem. Soc. 1929, 51, 2262–2266.
17. (a) Braun, V. J.; Sobecki, W. Ber. 1911, 44, 2526–2534; (b) Hanson, J. R.;
Premuzic, E. Tetrahedron 1967, 23, 4105–4110.
18. Griffith, D. P.; Gleeson, M. J.; Lee, H.; Longuet, R.; Deman, E.; Earle, N. Eur. Urol.
1991, 20, 243–247.
Acknowledgments
C.N. is thankful to UGC, New Delhi; J.R., G.K.R., and M.K.K.R. are
thankful to the CSIR, New Delhi for the award of Junior Research
Fellowships. B.C.R. is thankful to the CSIR, New Delhi for the award
of Senior Research Fellowship.
19. Tkac, P.; Matteson, B.; Bruso, J.; Paulenova, A. J. Radioanal. Nucl. Chem. 2008,
277, 31–36.
20. Typical procedure for preparation of oxime under conventional heating:
Benzaldehyde 1a (1.0 g, 9.4 mmol), acetohydroxamic acid (1.1, 14.1 mmol),
References and notes
methanol (10 ml) and BF3.OEt2 (135 ll, 0.94 mmol) were taken in a 25 ml
1. (a) Anand, N.; Owston, N. A.; Parker, A. J.; Slatforda, P. A.; Williamsa, J. M. J.
Tetrahedron Lett. 2007, 48, 7761–7763; (b) Mendelsohn, B. A.; Lee, S.; Kim, S.;
Teyssier, F.; Aulakh, V. S.; Marco, A.; Ciufolini, M. A. Org. Lett. 2009, 11, 1539–
1542.
2. (a) Olah, G. A.; Ramaiah, P.; Lee, C.-S.; Suryaprakash, G. K. Synlett 1992, 337–
339; (b) lffland, D. C.; Criner, G. X.; Koral, M.; Lotspeich, F. J.; Papanastassiou, Z.
B., ; White, S. M., Jr. J. Am. Chem. Soc. 1953, 75, 4044–4048.
3. (a) Walter, C., Jr. J. Am. Chem. Soc. 1952, 74, 5185–5187; (b) Li, H.-Q.; Xiao, Z.-P.;
Luo, Y.; Yan, T.; Lv, P.-C.; Zhu, H.-L. Eur. J. Med. Chem. 2009, 44, 2246–2251.
4. Chandrasekhar, S.; Gopalaiah, K. Tetrahedron Lett. 2001, 42, 8123–8125.
5. (a) Pohjakallio, A.; Pihko, P. M. Chem. Eur. J. 2009, 15, 3960–3964; (b) Shotter, R.
G.; Sesardi, D.; Wright, P. H. Tetrahedron 1975, 31, 3069–3072.
round-bottomed flask fitted with a condenser and calcium chloride guard tube.
The mixture was refluxed for 3.5 h and after completion of the reaction (TLC),
the reaction mixture was cooled to room temperature. Solvent was removed
from the mixture under reduced pressure and the crude product was purified
by column chromatography (silica gel 100–200 mesh, ethyl acetate-hexane:
1:5) to obtain benzaldoxime 2a (0.98 g, 87%) in the form of white powder and
it was characterized by the following spectral data: 1H NMR (300 MHz, CDCl3):
d = 9.61 (bs, 1H, exchangeable with D2O), 8.11(s, 1H), 7.54–7.63(m, 2H), 7.33–
7.41 (m, 3H,); 13C NMR (75 MHz, CDCl3): d = 150.05, 131.52, 128.31, 127.08,
126.11; IR (KBr):
t 3380, 2977, 2924, 1762, 1620, 1369, 1494, 1257, 1075, 989,
643 cmÀ1; EIMS (m/z, %): 121 (M+), 104, 77, 51; Exact mass observed for
C7H7NO: 121.0521(calculated: 121.0528).
6. (a) Parthasarathy, K.; Cheng, C.-H. J. Org. Chem. 2009, 74, 9363; (b) Too, P. C.;
Wang, Y.-F.; Chiba, S. Org. Lett. 2010, 12, 568–5691.
Procedure under microwave heating: Benzaldehyde 1a (1.0 g, 9.4 mmol),
acetohydroxamic acid (1.1 g, 14.1 mmol), methanol (1 ml) were taken in a
10 ml pressure tube and to this, BF3.OEt2 (135 ll, 0.94 mmol) was added and
7. (a) Chaudhuri, P. Coord. Chem. Rev. 2003, 243, 143–190; (b) Kukushikin, V. Y.;
Pombeiro, A. J. L. Coord. Chem. Rev. 1999, 181, 147–175; (c) Kukushikin, V. Y.;
Tudela, D.; Pombeiro, A. J. L. Coord. Chem. Rev. 1996, 156, 333–362.
8. (a) Iwamura, H. J. Med. Chem. 1980, 23, 308–312; (b) Takahashi, Y.; Miyashita,
Y.; Tanaka, Y.; Abe, H.; Sasaki, S. J. Med. Chem. 1982, 25, 1245–1248.
9. Eyer, P. A.; Worek, F. In Chemical Warfare Agents Toxicology and Treatment;
Marrs, T. C., Maynard, R. L., Sidell, F. R., Eds.; Wiley, 2007; pp 305–329.
10. Atria, A.; Michael, M. Pharmazie 1982, 37, 551–553.
the mixture was subjected to microwave heating (CEM discover, 360 W, 70 °C,
25 psi) for 6 min. The crude product obtained was purified as mentioned above
to afford benzaldoxime 2a (1.1 g, 95%), which gave spectral data same as above.
21. (a) Neverov, A. A.; Gibson, G.; Brown, R. S. Inorg. Chem. 2003, 42, 228–234; (b)
Neverov, A. A.; McDonald, T.; Gibson, G.; Brown, R. S. Can. J. Chem. 2001, 79,
1704–1710.