6506
Y. Zhou et al. / Bioorg. Med. Chem. Lett. 19 (2009) 6502–6506
the non-MPEP-binding PAM CPPHA,20,21 we were hoping that this
series would also interact with this distinct allosteric binding site
and provide the first NAM tools to study the CPPHA binding site.
However, further evaluation of 9 showed the displacement of
2. (a) Gasparini, F.; Lingenhohl, K.; Stoehr, N.; Flor, P. J.; Heinrich, M.; Vranesic, I.
Neuropharmacology 1999, 38, 1493; (b) Lea, P. M., IV; Faden, A. I. CNS Drug Rev.
2006, 12(2), 149.
3. Alagille, D.; Baldwin, R. M.; Roth, B. L.; Wroblewski, J. T.; Grajkowska, E.;
Tamagnan, G. D. Bioorg. Med. Chem. Lett. 2005, 15, 945.
[3H]3-methoxy-5-(2-pyridinylethynyl) pyridine with
a Ki of
4. Roppe, J. R.; Wang, B.; Huang, D.; Tehrani, L.; Kamenecka, T.; Schweiger, E. J.;
Anderson, J. J.; Brodkin, J.; Jiang, X.; Cramer, M.; Chung, J.; Reyes-Manalo, G.;
Munoz, B.; Cosford, N. D. P. Bioorg. Med. Chem. Lett. 2004, 14, 3993.
5. Newman, A. H.; Kulkarni, S. S. Bioorg. Med. Chem. Lett. 2007, 17, 2987.
6. Galatis, P.; Yamagata, K.; Wendt, J. A.; Connolly, C. J.; Mickelson, J. W.; Milbank,
J. B. J.; Bove, S. E.; Knauer, C. S.; Brooker, R. M.; Augelli-Szafran, C. E.; Schwartz,
R. D.; Kinsora, J. J.; Kilgore, K. S. Bioorg. Med. Chem. Lett. 2007, 17, 6525.
7. Newman, A. H.; Kulkarni, S. S. Bioorg. Med. Chem. Lett. 2007, 17, 2074.
8. Eastman, B.; Chen, C.; Smith, N. D.; Poon, S.; Chung, J.; Reyes-Manalo, G.;
Cosford, N. D. P.; Munoz, B. Bioorg. Med. Chem. Lett. 2004, 14, 5485.
9. Bach, P.; Nilsson, K.; Svensson, T.; Baur, U.; Hammerland, L. G.; Peterson, A.;
Wallberg, A.; Osterland, K.; Karis, D.; Boije, M.; Wensbo, D. Bioorg. Med. Chem.
Lett. 2006, 16, 4788.
10. Micheli, F.; Bertani, B.; Bozzoli, A.; Crippa, L.; Cavanni, P.; Fabio, R. D.; Donati,
D.; Marzorati, P.; Merlo, G.; Paio, A.; Pergunni, L.; Zarantonello, P. Bioorg. Med.
Chem. Lett. 2008, 18, 1804.
11. Kulkarni, S. S.; Zhao, M.-F.; Cao, J.; Deschamps, J. R.; Rodriguez, A. L.; Conn, P. J.;
Newman, A. H. J. Med. Chem. 2009, 52, 3563.
12. Hammerland, L. G.; Johansson, M.; Mattson, J. P.; Minidis, A. B. E.; Nilsson, K.;
Peterson, A.; Wensbo, D.; Wallberg, A.; Osterlund, K. Bioorg. Med. Chem. Lett.
2006, 16, 2467.
13. Porter, R. H. P.; Jaeschke, G.; Spooren, W.; Ballard, T. M.; Buttelmann, B.;
Kolczewski, S.; Peters, J.-U.; Prinseen, E.; Wichmann, J.; Vieira, E.; Muhlemann,
A.; Gatti, S.; Mutel, V.; Malherbe, P. J. Pharmacol. Exp. Ther. 2005, 315, 711.
14. (a) Rodriguez, A.L.; Williams, R.; Zhou, Y.; Lindsley, S.R.; Le, U.; Grier, M.D.;
Weaver, C.D.; Conn, P.J.; Lindsley, C.W. Bioorg. Med. Chem. Lett. 2009, 19, 3209;
(b) mGluR5 in vitro functional assay. HEK293A cells expressing rat mGluR5
319 nM—a value comparable to the IC50 (420 nM), which indicated
its interaction with MPEP-binding site. Our continuing efforts will
focus on modifications of both the phthalimide moiety and the
central phenyl ring of the scaffold.
Lastly, our attention was directed at lead optimization of 10, N-
(3-(1H-benzo[d]imidazol-2-yl)-4-chlorophenyl)-5-bromofuran-2-
carboxamide. Once again, we resynthesized 10 in the context of a
small library of analogs.15 Surprisingly, upon resynthesis, lead 10
was totally inactive (IC50 >30
lM) and the majority of analogs dis-
played only poor activity at best (IC50s 10–30
l
M). This effort pro-
duced three interesting compounds (Fig. 5) 23 wherein the
chlorine of the central phenyl ring was replaced with hydrogen,
24 and 25 where the benzimidazole is replaced with a benzoxaz-
ole. In these examples, 23 was a weak mGluR5 NAM (IC50 = 3.5
34% Glu Max), 25 was a full mGluR5 NAM (IC50 = 2.1 M, 2.3% Glu
Max) while 24 was a modestly potent mGluR5 PAM (EC50 = 2.2 M,
lM,
l
l
68% Glu Max)—a very interesting ‘switch’ in the mode of mGluR5
pharmacology.17,18 Unlike 8 and 9, which afforded comparable
IC50s/Kis, 24 displaced [3H]3-methoxy-5-(2-pyridinylethynyl)pyri-
dine with a Ki >10-fold less than the EC50. These data are consistent
with the hypothesis that the PAM activity of 24 is mediated by
interaction with the MPEP site.25,26 Previous studies suggest that
mGluR5 PAMs acting at this site display strong cooperativity with
orthosteric agonists so that the mGluR5 PAM potencies are signif-
icantly greater than their affinities. However, based on these data,
it is also possible that 24 does not act solely through interaction
with the MPEP site, but potentially at the CPPHA site or a poten-
tially third allosteric site on mGluR5. Studies are underway to ad-
dress this question. Importantly, 8, 9, 23, 24 and 25 were selective
versus mGluRs 1, 2, 3, 4, 7 and 8.
In summary, our HTS campaign identified several novel non-
competitive mGluR5 antagonists based on 8 and 9 with little or
no structural and topological similarity to MPEP. An iterative par-
allel library synthesis strategy helped to rapidly develop SAR for
these series. IC50s of analogs of 8 and 9 ranged from 420 nM to
880 nM for the most potent mGluR5 NAMs and, despite divergence
from the MPEP chemotype, binding experiments indicated these
NAMs bound to the MPEP site. Optimization efforts also identified
fundamentally new mGluR5 PAM chemotypes, represented by 17u
and 17v, as well as new mGluR5 partial antagonists 22f and 22g.
While lead 10 was inactive upon resynthesis, both NAMs 23 and
25 and PAM 24 were identified within an analog library, and
PAM 24 displayed only weak displacement of [3H]3-methoxy-5-
(2-pyridinylethynyl) pyridine, suggesting 24 may not act solely
through interaction with the MPEP site. These data further high-
light the complexities and subtle modifications that can alter
modes of mGluR5 pharmacology for MPEP site ligands. Further
refinements in this arena are in progress and will be reported in
due course.
receptor were plated (BD Falcon Poly-D-lysine Cellware) at 50,000 cells/well in
assay media (DMEM, 20 mM HEPES, 10% dialyzed FBS, and 1 mM sodium
pyruvate). The plates were incubated overnight at 37 °C in 5% CO2. Media was
removed and assay buffer (Hanks Balanced Salt Solution, 20 mM HEPES,
2.5 mM Probenecid, pH 7.4) containing 4.0
added. Cells were incubated for 45 min (37 °C, 5% CO2) to allow for dye loading.
Dye was removed, 20 L assay buffer was added and the cell plate was allowed
lM Fluo4-AM dye (Invitrogen) was
l
to incubate for 10 min. After incubation in assay buffer, cell plates were loaded
into Flexstation II (Molecular Devices Corp). Test compound in assay buffer was
added 19 seconds into the assay and subsequently, asubmaximal (250 nM) or
nearly maximal (1.25
for potentiators and antagonists, respectively. Controls included compound
vehicle (0.2% DMSO) plus assay buffer, ECmax (100 glutamate), and
submaximal or nearly maximal concentrations of glutamate. Compounds
were tested in concentrations ranging from 46 pM to 100 M. Fold shifts were
determined using the same functional assay by varying the amount of
glutamate in the presence of either fixed concentration of compound
(10 M) or vehicle. concentration response curve was generated using
glutamate concentrations ranging from 4.6 nM to 10 M. Controls included
compound vehicle (0.2% DMSO) plus assay buffer, ECmax (100 V glutamate),
lM) amount of glutamate was added 109 s into the assay
l
V
l
a
l
A
l
l
and glutamate concentration response curve. Assays were performed in
triplicate on three different days. Concentration response curves were
generated using GraphPad Prism 4.0.
15. Kennedy, J. P.; Williams, L.; Bridges, T. M.; Daniels, R. N.; Weaver, D.; Lindsley,
C. J. Comb. Chem. 2008, 10, 345.
16. Leister, W. H.; Strauss, K. A.; Wisnoski, D. D.; Zhao, Z.; Lindsley, C. W. J. Comb.
Chem. 2003, 5, 322.
17. Sharma, S.; Rodriguez, A.; Conn, P. J.; Lindsley, C. W. Bioorg. Med. Chem. Lett.
2008, 18, 4098.
18. Sharma, S.; Heiman, J. U.; Rook, J. M.; Jones, C. K.; Conn, P. J.; Lindsley, C. W. J.
Med. Chem. 2009, 52, 4103.
19. O’Brien, J. A.; Lemaire, W.; Chen, T.-B.; Chang, R. S. L.; Jacobson, M. A.; Ha, S. N.;
Lindsley, C. W.; Sur, C.; Pettibone, D. J.; Conn, J.; Wiliams, D. L. Mol. Pharmacol.
2003, 64(3), 731.
20. O’Brien, J. A.; Lemaire, W.; Wittmann, M.; Jacobson, M. A.; Ha, S. N.; Wisnoski,
D. D.; Lindsley, C. W.; Schaffhauser, H. J.; Sur, C.; Duggan, M. E.; Pettibone, D. J.;
Conn, J.; Williams, D. L. J. Pharmacol. Exp. Ther. 2004, 309(2), 568.
21. Zhao, Z.; Wisnoski, D. D.; O’Brien, J. A.; Lemiare, W.; Williams, D. L., Jr.;
Jacobson, M. A.; Wittman, M.; Ha, S.; Schaffhauser, H.; Sur, C.; Pettibone, D. J.;
Duggan, M. E.; Conn, P. J.; Hartman, G. D.; Lindsley, C. W. Bioorg. Med. Chem.
Lett. 2007, 17, 1386.
22. Lindsley, C. W.; Wisnoski, D. D.; Leister, W. H.; O’Brien, J. A.; Lemiare, W.;
Williams, D. L., Jr.; Burno, M.; Sur, C.; Kinney, G. G.; Pettibone, D. J.; Tiller, P. R.;
Smith, S.; Duggan, M. E.; Hartman, G. D.; Conn, P. J.; Huff, J. R. J. Med. Chem.
2004, 47, 5825.
23. Engers, D. W.; Rodriguez, A. L.; Oluwatola, O.; Hammond, A. S.; Venable, D. F.;
Williams, R.; Sulikowski, G. A.; Conn, P. J.; Lindsley, C. W. ChemMedChem 2009,
4, 505.
Acknowledgments
The authors thank NIDA (DA023947-01) and Seaside Therapeu-
tics (VUMC33842) for support of our programs in the development
of mGluR5 non-competitive antagonists and partial antagonists.
24. Rodriguez, A. L.; Nong, Yi.; Sekaran, N. K.; Alagille, D.; Tamagnan, G. D.; Conn, P.
J. Mol. Pharmacol. 2005, 68, 793.
References and notes
25. de Paulis, T.; Hemstapat, K.; Chen, Y.; Zhang, Y.; Saleh, S.; Alagille, D.; Baldwin,
R. M.; Tamagnan, G. D.; Conn, P. J. J. Med. Chem. 2006, 49, 3332.
26. Chen, Y.; Goudet, C.; Pin, J. P.; Conn, P. J. Mol. Pharmacol. 2008, 73, 909.
1. a Schoepp, D. D.; Jane, D. E.; Monn, J. A. Neuropharmacology 1999, 38, 1431; (b)
Conn, P. J.; Pin, J.-P. Annu. Rev. Pharmacol. Toxicol. 1997, 37, 205.