T. Mizutani et al.
Bull. Chem. Soc. Jpn., 76, No. 6 (2003) 1255
In a similar manner, 3-(methoxycarbonylmethyl)-2-pyrroli-
dones 6B–D were prepared from the corresponding homoallyl-
amine derivatives 1B–D. Diastereomers of 6B,C were carefully
separated by HPLC and subjected to analyses.
4.14 Hz), 2.95 (1H, ddd, J ¼ 12:44, 8.53, 4.14 Hz), 3.63 (3H,
s), 4.36 (1H, td, J ¼ 8:53, 3.41 Hz), 7.15 (2H, d, J ¼ 8:24 Hz),
7.17–7.24 (1H, m), 7.26–7.33 (4H, m), 7.88 (2H, d, J ¼ 8:24 Hz).
Methyl 2-Oxo-1-tosyl-1-azaspiro[4.5]decan-3-acetate (6D):
Mp 159.7–161.3 C (from hexane/ethyl acetate); IR (KBr) 2979,
2938, 2867, 1723, 1596, 1442, 1363, 1342, 1311, 1301, 1261,
1215, 1178, 1161, 1152, 1089, 1066, 998, 882, 826, 740, 706,
683, 656 cmꢂ1 1H NMR (CDCl3) ꢂ 1.22–1.38 (2H, m), 1.38–
;
ꢃ
Methyl 2-Oxo-1-tosyl-3-pyrrolidineacetate (6A): Mp 63.0–
ꢃ
64.2 C (from hexane/ethyl acetate); IR (KBr) 2953, 1734, 1595,
1437, 1357, 1267, 1228, 1166, 1123, 1089, 1018, 992, 893, 814,
760, 718, 659 cmꢂ1
;
1H NMR (CDCl3) ꢂ 1.81 (1H, dddd,
J ¼ 12:74, 10.97, 10.00, 8.78 Hz), 2.38 (1H, dddd, J ¼ 12:74,
8.78, 7.07, 1.71 Hz), 2.40 (1H, dd, J ¼ 16:80, 8.78 Hz), 2.44
(3H, s), 2.79 (1H, dd, J ¼ 16:80, 4.14 Hz), 2.86 (1H, dtd,
J ¼ 10:97, 8.78, 4.14 Hz), 3.64 (3H, s), 3.72 (1H, td, J ¼ 10:00,
7.07 Hz), 3.99 (1H, ddd, J ¼ 10:00, 8.78, 1.71 Hz), 7.33 (2H, d,
J ¼ 8:05 Hz), 7.92 (2H, d, J ¼ 8:05 Hz). Found: C, 53.84; H,
5.51; N, 4.53%. Calcd for C14H17NO5S: C, 54.01; H, 5.50; N,
4.50%.
1.54 (2H, m), 1.64–1.72 (2H, m), 1.74–1.89 (3H, m), 2.32 (1H,
dd, J ¼ 16:78, 8.53 Hz), 2.42 (3H, s), 2.48 (1H, td, J ¼ 13:44,
3.68 Hz), 2.66 (1H, dd, J ¼ 12:68, 9.03 Hz), 2.80 (1H, dd,
J ¼ 16:78, 3.90 Hz), 2.84–2.94 (2H, m), 3.65 (3H, s), 7.31 (2H,
d, J ¼ 8:53 Hz), 7.92 (2H, d, J ¼ 8:53 Hz). Found: C, 59.92;
H, 6.66; N, 3.65%. Calcd for C19H25NO5S: C, 60.14; H, 6.64;
N, 3.69%.
Methyl 2-Oxo-5-phenyl-1-tosyl-3-pyrrolidineacetate (6B):
Diastereomer 1: Mp 139.0–140.2 ꢃC (from hexane/AcOEt); IR
(KBr) 3033, 2980, 2953, 2932, 1736, 1726, 1593, 1492, 1457,
1437, 1383, 1360, 1335, 1290, 1250, 1223, 1171, 1145, 1121,
1105, 1089, 1030, 1016, 996, 970, 898, 814, 763, 717, 704, 668
The present work was partially supported by the Asahi
Glass Foundation and Grant-in-Aid for Scientific Research
from the Ministry of Education, Culture, Sports, Science and
Technology.
1
cmꢂ1; H NMR (CDCl3) ꢂ 2.29 (1H, ddd, J ¼ 12:44, 8.53, 1.21
References
Hz), 2.34 (1H, ddd, J ¼ 12:44, 11.71, 8.53 Hz), 2.40 (3H, s),
2.46 (1H, dd, J ¼ 17:07, 8.53 Hz), 2.83 (1H, dd, J ¼ 17:07,
4.39 Hz), 3.17 (1H, dtd, J ¼ 11:71, 8.53, 4.39 Hz), 3.64 (3H, s),
5.45 (1H, dd, J ¼ 8:53, 1.21 Hz), 7.09–7.15 (2H, m), 7.19 (2H,
d, J ¼ 8:29 Hz), 7.25–7.34 (3H, m), 7.61 (2H, d, J ¼ 8:29 Hz).
Found: C, 61.90; H, 5.54; N, 3.60%. Calcd for C20H21NO5S: C,
62.00; H, 5.46; N, 3.62%. Diastereomer 2: Mp 105.5–106.4 ꢃC
(from hexane/AcOEt); IR (KBr) 3068, 3033, 2955, 2927, 1733,
1597, 1496, 1459, 1436, 1404, 1362, 1327, 1237, 1198, 1161,
1 H. M. Colquhoun, D. J. Thompson, and M. V. Twigg,
‘‘Carbonylation,’’ Plenum Press, New York (1991).
2
3
4
J. Falbe and F. Korte, Chem. Ber., 98, 1928 (1965).
J. F. Knifton, J. Organomet. Chem., 188, 223 (1980).
I. Ojima, A. Korda, and W. R. Shay, J. Org. Chem., 56,
2024 (1991).
5
B. E. Ali, K. Okuro, G. Vasapollo, and H. Alper, J. Am.
Chem. Soc., 118, 4264 (1996); K. Okuro, H. Kai, and H. Alper,
Tetrahedron: Asymmetry, 8, 2307 (1997).
1
1104, 1089, 1006, 983, 890, 817, 767, 701, 665 cmꢂ1; H NMR
(CDCl3) ꢂ 1.79 (1H, ddd, J ¼ 12:91, 10.72, 8.29 Hz), 2.40 (3H,
s), 2.53 (1H, dd, J ¼ 17:31, 8.29 Hz), 2.79 (1H, dt, J ¼ 12:91,
8.29 Hz), 2.84 (1H, dd, J ¼ 17:31, 3.90 Hz), 3.00 (1H, dtd,
J ¼ 10:72, 8.29, 3.90 Hz), 3.65 (3H, s), 5.21 (1H, t, J ¼ 8:29
Hz), 7.18 (2H, d, J ¼ 8:29 Hz), 7.18–7.24 (2H, m), 7.26–7.32
(3H, m), 7.53 (2H, d, J ¼ 8:29 Hz). Found: C, 61.83; H, 5.54;
N, 3.54%. Calcd for C20H21NO5S: C, 62.00; H, 5.46; N, 3.62%.
Methyl 2-Oxo-5-(3-phenylpropyl)-1-tosyl-3-pyrrolidineace-
6
123, 10214 (2001).
B. G. Van den Hoven and H. Alper, J. Am. Chem. Soc.,
7
Examples for ꢀ-lactams: M. Pinza, C. Farina, A. Cerri, U.
Pfeiffer, M. T. Riccaboni, S. Banfi, R. Biagetti, O. Pozzi, M.
Magnani, and L. Dorigotti, J. Med. Chem., 36, 4214 (1993); P.
A. Reddy, B. C. H. Hsiang, T. N. Latifi, M. W. Hill, K. E.
Woodward, S. M. Rothman, J. A. Ferrendelli, and D. F. Covey,
J. Med. Chem., 39, 1898 (1996); A. Spaltenstein, M. R. Almond,
W. J. Bock, D. G. Cleary, E. S. Furfine, R. J. Hazen, W. M.
Kazmierski, F. G. Salituro, R. D. Tung, and Wright, Bioorg.
Med. Chem. Lett., 10, 1159 (2000).
tate (6C):
Diastereomer 1: An oil; MS m=z 429 (Mþ,
89.95%), 398 (15.78), 370 (19.91), 365 (9.00), 310 (13.13), 306
(17.04), 274 (61.99), 242 (55.24), 214 (7.95), 155 (25.48), 124
(12.50), 91 (100.00), 65 (9.97); IR (neat) 3060, 3027, 2951,
2927, 2861, 1733, 1597, 1496, 1454, 1438, 1362, 1262, 1234,
8
Examples for transformation of ꢀ-lactams to ꢀ-amino acid
derivatives: P. Jouin, B. Castro, and D. Nisato, J. Chem. Soc., Per-
kin Trans. 1, 1987, 1177; to proline derivatives: D. A. DeGoey,
H.-J. Chen, W. J. Flosi, D. J. Grampovnik, C. M. Yeung, L. L.
Klein, and D. J. Kempf, J. Org. Chem., 67, 5445 (2002); S.
Hanessian, M. Bayrakdarian, and X. Luo, J. Am. Chem. Soc.,
124, 4716 (2002); to Sceletium alkaloid: H. Ishibashi, T. S. So,
K. Okochi, T. Sato, N. Nakamura, H. Nakatani, and M. Ikeda,
J. Org. Chem., 56, 95 (1991).
1169, 1115, 1090, 1019, 995, 896, 816, 752, 703, 667 cmꢂ1
;
1H NMR (CDCl3) ꢂ 1.41 (1H, ddd, J ¼ 12:92, 10.00, 8.05 Hz),
1.52–1.66 (3H, m), 2.34 (1H, dd, J ¼ 17:80, 10.00 Hz), 2.35–
2.45 (1H, m), 2.43 (3H, s), 2.52 (1H, ddd, J ¼ 12:92, 10.00,
8.05 Hz), 2.57–2.72 (2H, m), 2.78 (1H, dd, J ¼ 17:80, 3.90 Hz),
2.82 (1H, qd, J ¼ 10:00, 3.90 Hz), 3.63 (3H, s), 4.23 (1H, qd,
J ¼ 8:05, 2.68 Hz), 7.15 (2H, d, J ¼ 8:29 Hz), 7.17–7.25 (1H,
m), 7.26–7.40 (4H, m), 7.89 (2H, d, J ¼ 8:29 Hz). Diastereomer
2: An oil; MS m=z 429 (Mþ, 37.81%), 398 (11.57), 370 (5.55),
365 (11.62), 310 (9.24), 306 (5.93), 274 (72.10), 242 (94.16),
214 (7.77), 155 (31.09), 124 (11.82), 91 (100.00), 65 (12.80);
IR (neat) 3061, 3025, 2951, 2927, 2863, 1733, 1597, 1495,
1454, 1437, 1362, 1168, 1088, 1029, 995, 887, 815, 754, 702,
9
a) K. Inomata, S. Toda, and H. Kinoshita, Chem. Lett.,
1990, 1567. b) S. Toda, M. Miyamoto, H. Kinoshita, and K.
Inomata, Bull. Chem. Soc. Jpn., 64, 3600 (1991). c) Y. Ukaji,
M. Miyamoto, M. Mikuni, S. Takeuchi, and K. Inomata, Bull.
Chem. Soc. Jpn., 69, 735 (1996). d) S. Takeuchi, Y. Ukaji, and
K. Inomata, Bull. Chem. Soc. Jpn., 74, 955 (2001).
10 Recent examples of related alkoxycarbonylation using
palladium salts: Y. Tamaru, M. Hojo, and Z. Yoshida, J. Org.
Chem., 56, 1099 (1991); O. Hamed, A. El-Qisairi, and P. M.
Henry, J. Org. Chem., 66, 180 (2001); T. Yokota, S. Sakaguchi,
1
662 cmꢂ1; H NMR (CDCl3) ꢂ 1.52–1.76 (3H, m), 1.89 (1H, td,
J ¼ 12:44, 8.53 Hz), 1.98 (1H, ddd, J ¼ 10:97, 7.31, 3.14 Hz),
2.17 (1H, dd, J ¼ 12:44, 8.53 Hz), 2.33 (1H, dd, J ¼ 17:07,
8.53 Hz), 2.43 (3H, s), 2.63 (2H, m), 2.76 (1H, dd, J ¼ 17:07,