Paper
Organic & Biomolecular Chemistry
3 For the utility of thiyl radicals in organic synthesis, see:
F. Dénès, M. Pichowicz, G. Povie and P. Renaud, Chem.
Rev., 2014, 114, 2587.
(i) M. Singh, A. K. Yadav, L. D. S. Yadav and R. K. P. Singh,
Tetrahedron Lett., 2017, 58, 2206–2208.
11 S. S. Zalesskiy, N. S. Shlapakov and V. P. Ananikov, Chem.
Sci., 2016, 7, 6740–6745.
4 For selective reviews on the applications of the thiol–ene/
thiol–yne reaction, see: (a) C. E. Hoyle, T. Y. Lee and 12 For recent examples of biomolecule conjugation and bio-
T. Roper, J. Polym. Sci., Part A: Polym. Chem., 2004, 42, 5301;
(b) E. Sletten and C. R. Bertozzi, Angew. Chem., Int. Ed.,
2009, 48, 6974; (c) C. E. Hoyle and C. N. Bowman, Angew.
Chem., Int. Ed., 2010, 49, 1540; (d) A. Dondoni and
molecule-compatible reaction induced by visible light, see:
(a) D. A. Fancy and T. Kodadek, Proc. Natl. Acad. Sci. U. S.
A., 1999, 96, 6020; (b) Y. Chen, A. S. Kamlet, J. B. Steinman
and D. R. Liu, Nat. Chem., 2011, 3, 146; (c) S. Sato and
H. Nakamura, Angew. Chem., Int. Ed., 2013, 52, 8681;
(d) C. Hu and Y. Chen, Tetrahedron Lett., 2015, 56, 884;
(e) H. Huang, G. Zhang, L. Gong, S. Zhang and Y. Chen,
J. Am. Chem. Soc., 2014, 136, 2280; (f) J. Yang, J. Zhang,
L. Qi, C. Hu and Y. Chen, Chem. Commun., 2015, 51, 5275.
A.
Marra,
Chem.
Soc.
Rev.,
2012,
41,
573;
(e) R. Hoogenboom, Angew. Chem., Int. Ed., 2010, 49, 3415;
(f) A. Massi and D. Nanni, Org. Biomol. Chem., 2012, 10,
3791; (g) A. B. Lowe, C. E. Hoyle and C. N. Bowman,
J. Mater. Chem., 2010, 20, 4745; (h) I. P. Beletskaya and
V. P. Ananikov, Chem. Rev., 2011, 111, 1596; 13 (a) G. Zhao, S. Kaur and T. Wang, Org. Lett., 2017, 19, 3291;
(i) R. Castarlenas, A. Di Giuseppe, J. J. Perez-Torrente and
L. A. Oro, Angew. Chem., Int. Ed., 2013, 52, 211;
( j) A. B. Lowe, Polymer, 2014, 55, 5517.
5 (a) H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew.
Chem., Int. Ed., 2001, 40, 2004; (b) M. G. Finn and
V. V. Fokin, Chem. Soc. Rev., 2010, 39, 1231.
(b) K. Wu, Y. Du and T. Wang, Org. Lett., 2017, 19, 5669;
(c) G. Zhao and T. Wang, Angew. Chem., Int. Ed., 2018, 57,
6120; (d) K. Wu, C. Fang, S. Kaur, P. Liu and T. Wang,
Synthesis, 2018, 50, 2897; (e) Y. Du, Z. Wei and T. Wang,
Synthesis, 2018, 50, 3379; (f) K. Wu, Y. Du, Z. Wei and
T. Wang, Chem. Commun., 2018, 54, 7443.
6 For selected reviews, see: (a) C. K. Prier, D. A. Rankic and 14 (a) S. Fukuzumi, H. Kotani, K. Ohkubo, S. Ogo,
D. W. C. MacMillan, Chem. Rev., 2013, 113, 5322;
(b) M. N. Hopkinson, B. Sahoo, J. L. Li and F. Glorius,
Chem. – Eur. J., 2014, 20, 3874; (c) M. D. Kärkäs, J. A. Porco
Jr. and C. R. J. Stephenson, Chem. Rev., 2016, 116, 9683;
(d) J. Xuan and W.-J. Xiao, Angew. Chem., Int. Ed., 2012, 51,
6828; (e) T. P. Yoon, ACS Catal., 2013, 3, 895;
N. V. Tkachenko and H. Lemmetyinen, J. Am. Chem. Soc.,
2004, 126, 1600; (b) A. C. Benniston, K. J. Elliott,
R. W. Harrington and W. Clegg, Eur. J. Org. Chem., 2009,
253; (c) A. Joshi-Pangu, F. Léveque, H. G. Roth, S. F. Oliver,
L. Campeau, D. A. Nicewicz and D. A. DiRocco, J. Org.
Chem., 2016, 81, 7244.
(f) D. A. Nicewicz and T. M. Nguyen, ACS Catal., 2014, 4, 15 (a) H. Takashima, S. Shinkai and I. Hamachi, Chem.
355; (g) S. Fukuzumi and K. Ohkubo, Org. Biomol. Chem.,
2014, 12, 6059; (h) D. P. Hari and B. König, Chem.
Commun., 2014, 50, 6688; (i) N. A. Romero and
Commun., 1999, 2345; (b) S. H. Hewitt, M. H. Filby,
E. Hayes, L. T. Kunh, A. P. Kalverda, M. E. Webb and
A. J. Wilson, ChemBioChem, 2017, 18, 223.
D. A. Nicewicz, Chem. Rev., 2016, 116, 10075; ( j) J.-R. Chen, 16 (a) A. Varki, Glycobiology, 2017, 27, 3; (b) R. A. Dwek, Chem.
X.-Q. Hu, L.-Q. Lu and W.-J. Xiao, Chem. Soc. Rev., 2016, 45,
2044; (k) J.-R. Chen, X.-Q. Hu, L.-Q. Lu and W.-J. Xiao, Acc.
Chem. Res., 2016, 49, 1911; (l) J.-R. Chen, X.-Y. Yu and
W.-J. Xiao, Synthesis, 2015, 604; (m) Y. Liu, R. Song and
J. Li, Sci. China: Chem., 2016, 59, 161.
7 A. Wimmer and B. König, Beilstein J. Org. Chem., 2018, 14,
54.
8 E. L. Tyson, M. S. Ament and T. P. Yoon, J. Org. Chem.,
2013, 78, 2046.
Rev., 1996, 96, 683; (c) B. G. Davis, Chem. Rev., 2002, 102,
579; (d) A. Helenius and M. Aebi, Science, 2001, 291, 2364;
(e) P. M. Rudd, T. Elliot, P. Cresswell, I. A. Wilson and
R. A. Dwek, Science, 2001, 291, 2370; (f) R. Kannagi, Curr.
Opin. Struct. Biol., 2002, 12, 599; (g) J. B. Lowe, Cell, 2001,
104, 809.
17 D. Horton and J. D. Wander, Carbohydrates: Chemistry and
Biochemistry, Academic Press, New York, 1990, vol. 4B,
p. 799.
9 M. H. Keylor, J. E. Park, C.-J. Wallentin and 18 (a) N. Floyd, B. Vijayakrishnan, J. R. Koeppe and
C. R. J. Stephenson, Tetrahedron, 2014, 70, 4264.
B. G. Davis, Angew. Chem., Int. Ed., 2009, 48, 7798;
(b) R. T. Dere and X. Zhu, Org. Lett., 2008, 10, 4641;
(c) G. J. L. Bernards, E. J. Grayson, S. Thompson,
J. M. Chalker, J. C. Errey, F. El Oualid, T. D. W. Claridge
and B. G. Davis, Angew. Chem., Int. Ed., 2008, 47, 2244;
(d) G. J. L. Bernardes, D. P. Gamblin and B. G. Davis,
Angew. Chem., Int. Ed., 2006, 45, 4007; (e) D. P. Gamblin,
P. Garnier, S. van Kasteren, N. J. Oldham, A. J. Fairbanks
and B. G. Davis, Angew. Chem., Int. Ed., 2004, 43, 827;
(f) S. B. Cohen and R. L. Halcomb, J. Am. Chem. Soc., 2002,
124, 2534; (g) D. A. Thayer, H. N. Yu, M. C. Galan and
C. H. Wong, Angew. Chem., Int. Ed., 2005, 44, 4596;
(h) Y. Zhu and W. A. van der Donk, Org. Lett., 2001, 3, 1189;
10 (a) E. L. Tyson, Z. L. Niemeyer and T. P. Yoon, J. Org. Chem.,
2014, 79, 1427; (b) V. T. Bhat, P. A. Duspara, S. Seo,
N. S. B. Abu Bakar and M. F. Greaney, Chem. Commun.,
2015, 51, 4383; (c) C. A. DeForest and K. S. Anseth, Nat.
Chem., 2011, 3, 925; (d) C. A. DeForest and K. S. Anseth,
Angew. Chem., Int. Ed., 2012, 51, 1816; (e) H. Shih and
C. C. Lin, Macromol. Rapid Commun., 2013, 34, 269;
(f) H. Shih, A. K. Fraser and C. C. Lin, ACS Appl. Mater.
Interfaces, 2013, 5, 1673; (g) D. Limnios and C. G. Kokotos,
Adv. Synth. Catal., 2017, 359, 323; (h) O. O. Fadeyi,
J. J. Mousseau, Y. Feng, C. Allais, P. Nuhant, M. Z. Chen,
B. Pierce and R. Robinson, Org. Lett., 2015, 17, 5756–5759;
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2018