J. M. Kim et al. / Tetrahedron Letters 49 (2008) 3248–3251
3251
3. For the synthesis of b-branched Baylis–Hillman adducts, see: (a)
Ramachandran, P. V.; Rudd, M. T.; Burghardt, T. E.; Reddy, M. V.
R. J. Org. Chem. 2003, 68, 9310–9316; (b) Shanmugam, P.; Rajasingh,
P. Chem. Lett. 2005, 1494–1495; (c) Concellon, J. M.; Huerta, M. J.
Org. Chem. 2005, 70, 4714–4719.
4. For the intermolecular palladium-mediated Heck type reactions of
Baylis–Hillman adducts, see: (a) Basavaiah, D.; Muthukumaran, K.
Tetrahedron 1998, 54, 4943–4948; (b) Sundar, N.; Bhat, S. V. Synth.
Commun. 1998, 28, 2311–2316; (c) Kumareswaran, R.; Vankar, Y. D.
Synth. Commun. 1998, 28, 2291–2302; (d) Perez, R.; Veronese, D.;
Coelho, F.; Antunes, O. A. C. Tetrahedron Lett. 2006, 47, 1325–1328;
(e) Kabalka, G. W.; Venkataiah, B.; Dong, G. Org. Lett. 2003, 5,
3803–3805.
m/z 269 (M++H). Anal. Calcd for C17H16O3: C, 76.10; H, 6.01. Found:
C, 76.38; H, 6.27.
Compound 3a-E: 26%; colorless oil; IR (film) 3515, 2953, 1713, 1693
cmꢀ1; 1H NMR (CDCl3, 300 MHz) d 3.75 (s, 3H), 4.06 (d, J = 11.4 Hz,
1H), 5.88 (d, J = 11.4 Hz, 1H), 7.24–7.43 (m, 10H), 7.96 (s, 1H); 13C
NMR (CDCl3, 75 MHz) d 52.07, 69.72, 125.43, 127.26, 128.41, 128.68,
129.10, 129.22, 132.37, 134.19, 141.84, 142.66, 168.01; ESIMS m/z 269
(M++H). Anal. Calcd for C17H16O3: C, 76.10; H, 6.01. Found: C,
76.31; H, 6.39.
Compound 3i-Z: 24%; colorless oil; IR (film) 3446, 2931, 1716,
;
1225 cmꢀ1 1H NMR (CDCl3, 300 MHz) d 0.89 (t, J = 6.9 Hz, 3H),
1.26–1.52 (m, 6H), 1.67–1.74 (m, 2H), 2.36 (d, J = 6.3 Hz, 1H), 3.67 (s,
3H), 4.40 (d, J = 6.3 Hz, 1H), 6.84 (s, 1H), 7.23–7.34 (m, 5H); 13C
NMR (CDCl3, 75 MHz) d 13.99, 22.53, 25.39, 31.59, 36.16, 51.75,
74.62, 128.20 (2C), 128.24, 133.27, 135.35, 136.40, 169.44; ESIMS m/z
263 (M++H). Anal. Calcd for C16H22O3: C, 73.25; H, 8.45. Found: C,
73.33; H, 8.72.
5. Tsuji, J. Palladium Reagents and Catalysts; John Wiley & Sons:
Chichester, 2004.
6. Typical procedure for the synthesis of 3a: A stirred solution of 1a
(192 mg, 1.0 mmol), 2a (408 mg, 2.0 mmol), Pd(OAc)2 (34 mg,
15 mol %), TBAB (322 mg, 1.0 mmol), KOAc (294 mg, 3.0 mmol) in
CH3CN (3 mL) as heated to reflux for 24 h. After the usual aqueous
workup and column chromatographic purification process (hexanes/
EtOAc, 7:1), we obtained compounds 3a-Z (97 mg, 36%), 3a-E (70 mg,
26%), and 4a (67 mg, 25%) as colorless oils. Other compounds were
synthesized similarly and the structures were identified by their
spectroscopic data. Representative spectroscopic data of prepared
compounds 3a-Z, 3a-E, 3i-Z, and 3i-E are as follows.
Compound 3i-E: 30%; white solid, mp 57–58 °C; IR (film) 3527, 2954,
1697, 1250 cmꢀ1 1H NMR (CDCl3, 300 MHz) d 0.85 (t, J = 6.9 Hz,
;
3H),1.16–1.49 (m, 6H), 1.60–1.72 (m, 1H), 1.85–1.96 (m, 1H), 3.32 (d,
J = 11.4 Hz, 1H), 3.85 (s, 3H), 4.63–4.71 (m, 1H), 7.26–7.42 (m, 5H),
7.69 (s, 1H); 13C NMR (CDCl3, 75 MHz) d 13.96, 22.55, 25.73, 31.52,
36.76, 51.94, 68.94, 128.49, 128.71, 129.06, 134.15, 134.63, 140.23,
168.33; ESIMS m/z 263 (M++H). Anal. Calcd for C16H22O3: C, 73.25;
H, 8.45. Found: C, 73.56; H, 8.42.
Compound 3a-Z: 36%; colorless oil; IR (film) 3469, 3028, 1728,
;
1713 cmꢀ1 1H NMR (CDCl3, 300 MHz) d 3.00 (d, J = 5.7 Hz, 1H),
7. E and Z isomers could be separated cleanly without loss in most
cases, and the chemical shifts of the vinyl protons of E isomers
3.54 (s, 3H), 5.60 (d, J = 5.7 Hz, 1H), 6.92 (s, 1H), 7.24–7.45 (m, 10H);
13C NMR (CDCl3, 75 MHz) d 51.67, 75.60, 126.56, 127.98, 128.16,
128.34, 128.38, 128.50, 135.16, 135.26, 135.41, 140.92, 169.08; ESIMS
appeared at 7.69–7.99 ppm and Z isomers at 6.57–7.11 ppm,
which are the characteristic chemical shifts ranges of this type
compounds.1–3