P. Saikia et al. / Tetrahedron Letters 44 (2003) 8725–8727
8727
In conclusion, we have provided a novel and efficient
method for the synthesis of various tetra-substituted
pyridine derivatives employing indium trichloride,
which makes a useful and important addition to exist-
ing methodologies.19 This new procedure has advan-
tages such as the lack of side product formation and
better yields than classical methods.
Chen, D. L.; Lu, Y. Q.; Daberman, J. X.; Mague, J. T. J.
Am. Chem. Soc. 1996, 118, 4216; (c) Paquette, L. A.;
Mitzel, T. M. J. Am. Chem. Soc. 1996, 118, 1931.
13. (a) Loh, T. P.; Pai, J.; Cao, G. Q. J. Chem. Soc., Chem.
Commun. 1996, 1819; (b) Loh, T. P.; Pai, J.; Lin, M. J.
Chem. Soc., Chem. Commun. 1996, 2315; (c) Ali, K.;
Chauhan, K. K.; Frost, C. G. Tetrahedron Lett. 1999, 40,
5621.
14. For reviews on InCl3, see: (a) Ranu, B. C. Eur. J. Org.
Chem. 2000, 2347; (b) Chauhan, K. K.; Frost, C. O. J.
Chem. Soc., Perkin Trans. 1 2000, 3015; (c) Ghosh, R.
Ind. J. Chem. 2001, 550.
Acknowledgements
15. (a) Harada, T.; Ohno, T.; Kobayashi, S.; Mukaiyama, T.
Synthesis 1991, 1216; (b) Yasuda, M.; Miyai, T.; Shibata,
I.; Baba, A.; Nomura, R.; Matsuda, H. Tetrahedron Lett.
1995, 36, 9497; (c) Loh, T. P.; Pai, J.; Cao, G. Q. J.
Chem. Soc., Chem. Commun. 1996, 1819; (d) Babu, G.;
Perumal, P. Tetrahedron Lett. 1997, 38, 5025.
We thank the Department of Science and Technology
(DST), New Delhi for financial support and Director,
Regional Research Laboratory, Jorhat for his encour-
agement to perform this work. One of us (P.S.) thanks
CSIR, New Delhi for the award of a senior research
fellowship.
16. (a) Laskar, D. D.; Prajapati, D.; Sandhu, J. S. Tetra-
hedron Lett. 2000, 41, 8639; (b) Barman, D. C.; Thakur,
A. J.; Prajapati, D.; Sandhu, J. S. Synlett 2001, 515.
17. In a typical case, ethyl acetoacetate (0.13 g, 1 mmol) and
InCl3 (0.22 g, 1 mmol) were added to enone oxime 1a
(0.16 g, 1 mmol) and the reaction mixture was heated
with vigorous stirring to 150–160°C and kept at this
temperature for 6–7 h (monitored by TLC). After that
the unreacted ethyl acetoacetate (if any remains) was
removed under reduced pressure. The residue was then
taken in diethyl ether (25 mL) and the resulting mixture
was extracted with 1 M HCl (3×20 mL). The combined
acidic aqueous extracts were adjusted to pH 9 by means
of aqueous ammonia and extracted with dichloromethane
(2×20 mL). The dichloromethane extract was dried over
anhydrous sodium sulphate and concentrated on a rotary
evaporator to afford the crude tetra-substituted pyridine
derivative 3a in 82% yield which was then purified by
column chromatography on silica gel using chloroform as
eluent to give the pure ethyl 2,6-dimethyl-4-
phenylpyridine-3-carboxylate 3a as a light yellow viscous
oil. 3a: 1H NMR (CDCl3) l 1.01 (t, J=7.3 Hz, 3H,
OCH2CH3), 2.58 (s, 3H, CH3), 2.64 (s, 3H, CH3), 4.11 (q,
J=7.3 Hz, 2H, OCH2CH3), 7.05 (s, 1H, pyridine-H5),
7.25 (m, 5H, aromatics), IR (KBr): 2975, 2920, 1720,
1585, 1265, 1206, 1085, 870, 765, 700 cm−1; lc 169.4,
159.2, 152.5, 150.9, 143.2, 130.46, 128.9, 127.9, 126.4,
121.6, 61.5 (CH2), 24.3(Me), 23.2(Me), 14.0(Me); EI MS
m/z 255. Calcd for C16H17NO2: C,75.29; H, 6,67; N, 5.49.
Found: C, 75.41; H, 6.74; N, 5.32. Similarly other enone
oximes and b-dicarbonyl compounds were reacted in the
presence of indium trichloride and the reaction times and
yields are recorded in Table 1. All the compounds
obtained were characterised fully by spectroscopic analy-
sis (IR, 1H NMR, MS) and finally by comparison with
authentic samples.
References
1. Hanket, T.; Brunne, R. M.; Miller, H.; Reichel, F.
Angew. Chem., Int. Ed. Engl. 1999, 38, 643.
2. Balasubramanian, M.; Keay, J. G. In Comprehensive
Heterocyclic Chemistry II; Katritzky, A. R.; Rees, C. W.;
Scriven, E. F. V., Eds.; Pergamon Press: Oxford, 1996;
Vol. 5, p. 245.
3. (a) Thomas, A. D.; Asokan, C. V. J. Chem. Soc., Perkin
Trans. 1 2001, 2583; (b) Ahmed, A. S.; Boruah, R. C.
Tetrahedron Lett. 1996, 37, 8231.
4. Stanforth, S. P.; Tarbit, B.; Watson, M. D. Tetrahedron
Lett. 2002, 43, 6015.
5. Chubb, R. W. J.; Bryce, M. R.; Tarbit, B. J. Chem. Soc.,
Perkin Trans. 1 2001, 1853.
6. (a) Baumgarten, P. Ber. 1924, 57, 1622; (b) Baumgarten,
P. Ber. 1925, 58, 2018; British Patent, 1968, 1102261.
7. Geirsson, J. K. F.; Johannesdottir, J. F. J. Org. Chem.
1996, 61, 7320.
8. Bagley, M. C.; Brace, C.; Dale, J. W.; Ohnesorge, M.;
Phillips, N. G.; Xiong, X.; Bower, J. J. Chem. Soc.,
Perkin Trans. 1 2002, 1663.
9. For some very recent reports see: (a) Karig, G.; Spencer,
J. A.; Gallagher, T. Org. Lett. 2001, 3, 835; (b)
Chibiryaev, A. M.; de Kimpe, N.; Tkachev, A. V. Tetra-
hedron Lett. 2000, 41, 8011; (c) Fallahpour, R. A. Synthe-
sis 2000, 1665; (d) Mello, J. V.; Finney, N. S. Org. Lett.
2001, 3, 4263.
10. For a recent work, see: (a) Araki, S.; Jin, S. J.; Butsugan,
Y. J. Chem. Soc., Perkin Trans. 1 1995, 549; (b) Araki, S.;
Yamada, M.; Butsugan, Y. Bull. Chem. Soc. Jpn. 1994,
67, 1126 and references cited therein; (c) Loh, T. P.; Xu,
K. C.; Sook-Chrang, D. H.; Sun, K. H. Synlett 1998, 369;
(d) Li, X. R.; Loh, T. P. Tetrahedron: Asymmetry 1996, 7,
1535; (e) Loh, T. P.; Li, X. R. J. Chem. Soc., Chem.
Commun. 1996, 1929.
18. Baruah, B.; Baruah, A.; Prajapati, D.; Sandhu, J. S.
Tetrahedron Lett. 1997, 38, 1449.
19. Jones, G. In Comprehensive Heterocyclic Chemistry. The
structure, Reactions, Synthesis and Uses of Heterocyclic
Compounds; Katritzky, A. R.; Rees, C. W., Eds. Pyridi-
nes and their Benzo Derivatives: (V) Synthesis; Pergamon
Press: Oxford, 1984; Vol. 2, pp. 397–434.
11. (a) Jin, S. J.; Araki, S.; Butsugan, Y. Bull. Chem. Soc.
Jpn. 1993, 66, 1528; (b) Araki, S.; Simizu, T.; Jin, S. J.;
Butsugan, Y. J. Chem. Soc., Chem. Commun. 1991, 824.
12. For a recent review on indium metal, see: (a) Li, C. J.;
Chan, T. K. Tetrahedron 1999, 55, 11149; (b) Li, C. J.;