ORGANIC
LETTERS
2003
Vol. 5, No. 23
4457-4459
Transformation of D-Glucose into
1D-3-Deoxy-3-hydroxymethyl-myo-inositol
by Stereocontrolled Intramolecular
Henry Reaction
Raquel G. Soengas, Juan C. Este´vez, and Ramo´n J. Este´vez*
Departamento de Qu´ımica Orga´nica, UniVersidade de Santiago,
15782 Santiago de Compostela, Spain
Received September 13, 2003
ABSTRACT
An intramolecular Henry cyclization provides a promising new strategy for the transformation of nitroheptofuranoses into deoxyhydroxy-
methylinositols. This method has allowed a stereospecific transformation of D-glucose into 1D-3-deoxy-3-hydroxymethyl-myo-inositol.
The nitroaldol condensation, or Henry reaction, couples a
carbonyl compound to a nitroalkane bearing an R hydrogen
atom, thereby creating an R-nitroalkanol. It is one of the
classical methods for carbon-carbon bond formation and
can result in the formation of one or two chiral centers.1
Following the condensation reaction, the nitro group can be
subjected to a range of chemical transformations,2 including
its removal.3
(sphinganine analogues,5 cerebroside B1b,6 etc.) and, more
recently, in studies on the asymmetric synthesis of nitroal-
kanols, in which dendritic,7 lanthanum-lithium-binaphthol,8
La-Li-6,6′-disubstituted BINOL,9 and zirconium phosphate10
catalysts have been used to achieve enantioselectivity.
Nevertheless, to the best of our knowledge, nitroethanol has
been used in only one intramolecular Henry reaction11 and
in only one Henry reaction in which the substrate has been
a sugar (D-glyceraldehyde).12
Nitroethanol has been used as the nitroalkane of the Henry
reaction4 in several total syntheses of natural products
(5) (a) Kolter, T.; van Echten-Deckert, G.; Sandhoff, K. Tetrahedron
1994, 50, 13425. (b) Mori, K.; Funaki, Y. Tetrahedron 1985, 41, 2369.
(6) (a) Kodato, S.; Nakagawa, M.; Nakayama, K.; Hino, T. Tetrahedron
1989, 45, 7247. (b) Nakagawa, M.; Kodato, S.; Nakayama, K.; Hino, T.
Tetrahedron Lett. 1987, 28, 6281.
(7) Morao, I.; Cossio, F. P. Tetrahedron Lett. 1997, 38, 6461.
(8) Sasai, H.; Watanabe, S.; Shibasaki, M. Enantiomer 1997, 2, 267.
(9) Sasai, H.; Tokunaga, T.; Watanabe, S.; Suzuki, T.; Itoh, N.; Shibasaki,
M. J. Org. Chem. 1995, 60, 7388.
(1) (a) Henry, C. R. Acad. Sci. Paris 1985, 120, 1265. (b) Luzzio, F. A.
Tetrahedron 2001, 57, 915.
(2) (a) Pinnick, H. W. Org. React. 1990, 38, 655. (b) McMurry, J. E.;
Melton, J.; Padgett, H. J. Org. Chem. 1974, 39, 259. (c) McMurry, J. E.;
Melton, J. J. Org. Chem. 1973, 38, 4367. (d) Olah, G. A.; Gupta, B. G. B.
Synthesis 1980, 44. (e) Crosslay, M. J.; Crumbie, R. L.; Fung, Y. M.; Potter,
J. J.; Pegler, M. A. Tetrahedron Lett. 1987, 28, 2883.
(3) Baumberg, F.; Vasella, A. HelV. Chim. Acta 1983, 66, 2210.
(4) For the first reported example of a Henry reaction involving
nitroethanol, see: Grob, C. A.; Gadient, F. HelV. Chim. Acta 1957, 40,
1145.
(10) Costantino, U.; Curini, M.; Marmottini, F.; Rosati, O.; Pisani, E.
Chem. Lett. 1994, 2215.
(11) Lichtenthaler, F. W.; Leinert, H. Chem. Ber. 1968, 101, 1815.
(12) Ghosh, A. K.; Lei, H. J. Org. Chem. 2002, 67, 8783.
10.1021/ol035771x CCC: $25.00 © 2003 American Chemical Society
Published on Web 10/14/2003