Communications
dramatically different pairing properties, which suggests that
their mutagenic properties vary as well.
Received: February 27, 2003
Revised: May 21, 2003 [Z51287]
Keywords: DNA damage · DNA · electron transfer · nucleotides ·
.
oxidative lesions
[1] a) T. Lindahl, Nature 1993, 362, 709; b) for a recent Review on
DNA damage and repair, see: O. D. Schärer, Angew. Chem.
2003, 115, 3052; Angew. Chem. Int. Ed. 2003, 42, 2946.
[2] E. C. Friedberg, G. C. Walker, W. Siede, DNA Repair and
Mutagenesis, ASM Press, Washington, DC, 1995.
[3] C. Richter, J.-W. Park, B. N. Ames, Proc. Natl. Acad. Sci. USA
1988, 85, 6465.
[4] A. P. Breen, J. A. Murphy, Free Radical Biol. Med. 1995, 18,
1033.
[5] M. L. Hamilton, Z. M. Guo, C. D. Fuller, H. Van Remmen, W. F.
Ward, S. N. Austad, D. A. Troyer, I. Thompson, A. Richardson,
Nucleic Acids Res. 2001, 29, 2117.
[6] R. S. Sohal, R. Weindruch, Science 1996, 273, 59.
[7] D. Harman, J. Gerontol. 1957, 2, 298.
[8] P. Hasty, J. Campisi, J. Hoeijmakers, H. van Steeg, J. Vijk,
Science 2003, 299, 1355.
[9] S. Hekimi, L. Guarente, Science 2003, 299, 1351.
[10] C. J. Burrows, J. G. Muller, Chem. Rev. 1998, 98, 1109.
[11] J. Cadet, M. Berger, T. Douki, B. Morin, S. Raoul, J.-L. Ravanat,
S. Spinelli, Biol. Chem. 1997, 378, 1275.
Figure 1. Melting curves of a) the two oligonucleotide double strands
containing a cFapydGuo:dG (red) and an 8-oxodGuo:dG (blue) base
pair and b) of the oligonucleotide double strands containing a
cFapydGuo:dA (red) and an 8-oxodGuo:dA (blue) base pair.
[12] J. Cadet, T. Delatour, T. Douki, D. Gasparutto, J.-P. Pouget, J.-L.
Ravanat, S. Sauvaigo, Mutat. Res. 1999, 424, 9.
[13] T. Douki, S. Spinelli, J. L. Ravanat, J. Cadet, J. Chem. Soc. Perkin
Trans. 2 1999, 1875.
[14] T. Finkel, N. J. Holbrook, Nature 2000, 408, 239.
[15] J. Butenandt, L. T. Burgdorf, T. Carell, Synthesis 1999, 1085.
[16] V. Bodepudi, S. Shibutani, F. Johnson, Chem. Res. Toxicol. 1992,
5, 608.
[17] V. Bodepudi, C. R. Iden, F. Johnson, Nucleosides Nucleotides
1991, 10, 755.
[18] J. C. Fromme, G. L. Verdine, Nat. Struct. Biol. 2002, 9, 544
[19] S. D. Bruner, D. P. G. Norman, G. L. Verdine, Nature 2000, 403,
859.
[20] M. Berger, J. Cadet, Z. Naturforsch. B 1985, 40, 1519.
[21] B. Tudek, J. Biochem. Mol. Biol. 2003, 36, 12.
[22] L. T. Burgdorf, T. Carell, Chem. Eur. J. 2002, 8, 293.
[23] K. Haraguchi, M. M. Greenberg, J. Am. Chem. Soc. 2001, 123,
8636.
[24] K. Haraguchi, M. O. Delaney, C. J. Wiederholt, A. Sambandam,
Z. Hantosi, M. M. Greenberg, J. Am. Chem. Soc. 2002, 124, 3263.
[25] C. J. Wiederholt, M. M. Greenberg, J. Am. Chem. Soc. 2002, 124,
7278.
[26] M. O. Delaney, M. M. Greenberg, Chem. Res. Toxicol. 2002, 15,
1460.
[27] G. E. Plum, F. Johnson, A. P. Grollman, K. Breslauer, Biochem-
istry 1995, 34, 16148.
curves), together with the corresponding melting curves of 8-
oxodGuo:dG and 8-oxodGuo:dA (blue curves) are depicted
in Figure 1. For cFapydGuo:dG and cFapydGuo:dA a first
very low melting point is observed at about 168C, which is not
observed in the experiments performed with the 8-oxodGuo
lesion. A second, much weaker transition is observed at
higher temperatures. This second transition cannot be
explained currently. One explanation could be that the
strongly destabilizing cFapydGuo:purine pairs induce local
melting of the duplex around the lesion site at 168C. Full
melting of the duplex would then explain the second higher
transition temperature. Alternatively, this second transition
could arise from the melting of an intramolecular hairpinlike
structure. Whatever the reason for the second melting curve
may be, it is clear that the cFapydGuo:purine-containing
duplexes show a first very low melting temperature indicative
of a strongly destabilized duplex structure. Most interesting
are, however, the dramatically different melting curves
obtained for the cFapydGuo:dA and 8-oxodGuo:dA
duplexes as depicted in Figure 1b. These curves clearly
show that in contrast to 8-oxodGuo, pairing of FapydGuo
with dA gives rise to strongly destabilized duplexes. We
therefore conclude that FapydGuo is unable to form proper
base pairs with dC and dA, which pair so well with 8-
oxodGuo. In contrast, the lesion FapydGuo seems to recog-
nize dT.[39]
[28] M. Kouchakdjian, V. Bodepudi, S. Shibutani, M. Eisenberg, F.
Johnson, A. P. Grollman, D. J. Patel, Biochemistry 1991, 30, 1403.
[29] M. Ferrero, V. Gotor, Chem. Rev. 2000, 100, 4319.
[30] F. Johnson, G. Dorman, R. A. Rieger, R. Marumoto, C. R. Iden,
R. Bonala, Chem. Res. Toxicol. 1998, 11, 193.
[31] S. Smirnov, F. Johnson, R. Marumoto, C. de los Santos, J.
Biomol. Struct. Dyn. 2000, 17, 981.
[32] The energies were calculated with Gaussian98 (RevisionA.7),
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery,
In summary, the main oxidative DNA lesions 8-oxodGuo
and FapydGuo, predominantly responsible for the mutagenic
and cell toxic effect of oxidative DNA damage, have
4950
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2003, 42, 4947 –4951