Table 2 One-pot tandem reaction under various conditionsa
with other aromatic or aliphatic aldehydes or a,b-unsaturated
aldehydes. The results are summarized in Table 3.
As can be seen in Table 3, all the aromatic aldehydes give the
selenium-substituted allenes in good yields. The aliphatic
aldehydes and a,b-unsaturated aldehydes can also provide the
selenium-substituted allenes in moderate yield (entries 5, 13). In
the case of s-BuSeLi, an inseparable 1 : 1 ratio of diastereoi-
Yield (%)b
1
somers 5k (determined by 400 MHz H NMR spectra) was
Entry
Solvent
T/°C
Time/h
5a
6a
1a
obtained (entry 11).
In summary, we have developed an efficient one-pot three-
1
2
3
4
5
THF
THF
THF
Et2O
225
5
5
1
2
2
29
—
82
—
—
36
34
—
51
63
28
57
—
32
19
240
component
Michael/aldol/Horner–Wadsworth–Emmons
225–rt
225–rt
rt
(HWE) tandem reaction of lithium alkylselenolates with
1-alkynylphosphine oxides and aldehydes, which provides a
convenient synthesis of selenium-substituted allenes. This
method possesses the advantages of readily available starting
materials, easy manipulation, mild reaction conditions and good
yields of products. Further application of selenium-substituted
allenes in organic synthesis is now in progress in our
laboratory.
Benzene
a The reaction was carried out using 1a (1.0 mmol), 2 (1.0 mmol) and 3a
(1.0 mmol). b Isolated yield.
In order to confirm the Michael/aldol adduct as the reaction
intermediate and the effect of the solvent, we transformed the
Michael/aldol adduct (6a), b-phosphonoallyl alcohol, to lithium
b-phosphonoallyl alkoxide by treating 6a with n-BuLi at 278
°C in THF and in ether. When the solution of lithium b-
phosphonoallyl alkoxide in THF was warmed to room tem-
perature, it eliminated diphenylphosphinate spontaneously
within 20 min to afford the selenium-substituted allene in 86%
yield. However, no selenium-substituted allene was obtained
and most of the material was recovered when the solution of
lithium b-phosphonoallyl alkoxide in ether was stirred at rt for
1 hour and quenched with NH4Cl saturated solution (Scheme
2).
Further investigation showed that other lithium alkylseleno-
lates such as s-BuSeLi, i-PrSeLi can also react with 1-alkynyl-
phosphine oxides and aldehydes to give the selenium-substi-
tuted allenes smoothly in good yields. However, the reaction did
not occur with the use of lithium phenylselenolate.
The present reaction conditions were compatible with the
reaction of aromatic or aliphatic 1-alkynylphosphine oxides
This work was supported by the National Natural Science
Foundation of China (20272050).
Notes and references
1 (a) For review of tandem reactions, see: G. H. Posner, Chem. Rev., 1986,
86, 831; (b) L. F. Tietze and U. Beifuss, Angew. Chem., Int. Ed. Engl.,
1993, 32, 131; (c) R. A. Bunce, Tetrahedron, 1995, 48, 13103; (d) L. F.
Tietze, Chem. Rev., 1996, 96, 115.
2 (a) M. P. Sibi and J. Lu, J. Org. Chem., 1997, 62, 5864; (b) I. Fleming
and A. K. Sarkar, J. Chem. Soc., Chem. Commun., 1986, 1199; (c) N.
Tsukada, T. Shimida, Y. S. Gyong, N. Asao and Y. Yamamoto, J. Org.
Chem., 1995, 60, 143; (d) A. G. M. Barrett and A. Kamimura, J. Chem.
Soc., Chem. Commun., 1995, 1755; (e) J. Jauch, Synlett, 1999, 1325; (f)
J. Jauch, Angew. Chem., Int. Ed., 2000, 39, 2764; (g) J. Jauch, J. Org.
Chem., 2001, 66, 609.
3 (a) The Chemistry of the Allenes; S. R. Landor, Ed.; Academic Press,
New York, 1982; Vols. 1–3; (b) The Chemistry of Ketenes, Allenes and
Related Compounds; S. Patal, Ed.; Wiley, New York, 1980; Vols. 1 and
2; (c) H. F. Schuster and G. M. Coppola, Allenes in organic synthesis;
Wiley, New York, 1984; (d) C. Bruneau and P. H. Dixneuf, Compr. Org.
Funct. Group Transform., 1995, 1, 953; (e) J. A Marshall, Chem. Rev.,
1996, 96, 31; (f) D. R. Taylor, Chem. Rev., 1967, 67, 317; (g) M.
Kanematsu and K. Aso, Trends Org. Chem., 1995, 5, 157; (h) R.
Zimmer, Synthesis, 1993, 2, 165.
4 (a) For recent reviews, see: R. Zimmer, C. U. Dinesh, E. Nandanan and
F. Khan, Chem. Rev., 2000, 100, 3067; (b) A. S. K. Hashimi, Angew.
Chem., Int. Ed., 2000, 39, 3590; (c) X. Lu, C. Zhang and Z. Xu, Acc.
Chem. Res., 2001, 34, 535.
Scheme 2
Table 3 Synthesis of selenium-substituted allenesa
5 (a) S. Ma and S. Zhao, J. Am. Chem. Soc., 2001, 123, 23; (b) S. Ma and
S. Wu, Chem. Commun., 2001, 441; (c) S. Ma and S. Wu, Tetrahedron
Lett., 2001, 42, 4075; (d) S. Ma, Z. Shi and S. Wu, Tetrahedron:
Asymmetry, 2001, 12, 193; (e) S. Ma and Z. Shi, Chem. Commun., 2002,
540; (f) S. Ma and Z. Yu, Angew. Chem., Int. Ed., 2002, 41, 1775.
6 (a) G. Pourcelot, P. Cadiot and A. Willmat, C. R. Acad. Sci., 1961, 252,
1630; (b) G. Pourcelot, M. Le Quan, M.-P. Simonin and P. Cardiot, Bull.
Soc. Chim. Fr., 1962, 1278; (c) L. Brandsma, H. E. Wijirs and J. F.
Arens, Recl. Trav. Chim. Pays-Bas, 1963, 82, 1040; (d) G. A.
Wildschut, J. H. Van Boom, I. Brandsma and J. E. Arens, Recl. Trav.
Chim. Pays-Bas, 1968, 87, 1447.
7 (a) G. Pourcelot and P. Cadiot, Bull. Soc. Chim. Fr., 1966, 3016; (b) M.
L. Petrov, S. I. Radchenko, V. S. Kupin and A. A. Petrov, J. Org. Chem.
USSR, 1973, 9, 683; (c) H. J. Reich, S. K. Shah, P. M. Gold and R. E.
Olson, J. Am. Chem. Soc., 1981, 103, 3112; (d) H. J. Reich and M. J.
Kelly, J. Am. Chem. Soc., 1982, 104, 1119.
Time/
min
Yieldb
Product (%)
Entry R1
R2
R3
1
2
3
4
5
C6H5
n-Bu p-ClC6H4
n-Bu C6H5
n-Bu p-CH3OC6H4
30
30
40
5a
5b
5c
5d
5e
5f
82
80
87
83
63
89
84
82
86
81
82
85
59
77
71
73
C6H5
C6H5
C6H5
C6H5
C6H5
n-Bu p-(CH3)2NC6H4 40
n-Bu n-C3H7
i-Pr p-CH3OC6H4
60
40
25
25
30
6
7
CH3OCH2 n-Bu C6H5
5g
5h
5i
8
9
CH3OCH2 n-Bu p-ClC6H4
CH3OCH2 n-Bu p-CH3OC6H4
10
11
12
13
14
15
16
CH3OCH2 n-Bu p-(CH3)2NC6H4 30
5j
CH3OCH2 s-Bu p-ClC6H4
CH3OCH2 i-Pr p-ClC6H4
CH3OCH2 n-Bu C6H5CHNCH
n-C5H11
n-C5H11
n-C5H11
25
25
40
50
50
50
5kc
5l
8 P. L. Fuchs and T. F. Braish, Chem. Rev., 1986, 86, 903.
9 (a) A. Kaminura, H. Mitsudera, S. Asano, A. Kakehi and M. Noguchi,
Chem. Commun., 1998, 1095; (b) M. Ono, K. Nishimura, Y. Nagaoka
and K. Tomioka, Tetrahedron Lett., 1999, 40, 1509; (c) A. Kaminura, H.
Mitsudera, S. Asano, S. Kidera and A. Kakehi, J. Org. Chem., 1999, 64,
6353.
5m
5n
5o
5p
n-Bu C6H5
n-Bu p-ClC6H4
n-Bu p-CH3OC6H4
10 (a) X. Huang and M. Xie, J. Org. Chem., 2002, 67, 8895; (b) X. Huang
and M. Xie, Org. Lett., 2002, 4, 1331.
11 (a) R. S. Macomber and T. C. Hemling, J. Am. Chem. Soc., 1986, 108,
343; (b) M. B. Marszak, M. Simalty and A. Seuleiman, Tetrahedron
Lett., 1974, 1905; (c) Y. Nagaoka and K. Tomioka, J. Org. Chem., 1998,
63, 6428.
a The reaction was carried out by adding a solution of 1 (1.0 mmol) and 3
(1.0 mmol) in THF (4 ml) to a solution of 2 (1.0 mmol) in THF (6 ml) at 225
°C, then the reaction mixture was warmed to rt in 20 min and stirred for the
time given in the Table at rt. The RSeLi was generated from (RSe)2 on
treatment with n-BuLi at rt. b Isolated yield of 5. c 5k d.r.
= 1 : 1
(determined by 400 MHz 1H NMR spectra).
12 Y. Nagaoka and K. Tomioka, Org. Lett., 1999, 1, 1467.
CHEM. COMMUN., 2003, 1714–1715
1715