Communication
ChemComm
Fig. 2 Computed reaction profile for the formation of 2a from 1a. Relative free energies (DG, at 298 K) and bond lengths are given in kcal molꢀ1 and
angstroms, respectively. All data have been computed at the PCM(CH2Cl2)-B3LYP-D3/def2-TZVPP//PCM(CH2Cl2)-B3LYP-D3/def2-SVP level.
amine usually deactivates the catalyst.13 In contrast, not only
does the amine moiety not hinder the carbene C–H insertion
catalyzed by Grubbs complexes, but it seems crucial for the
success of the reaction, which nicely agrees with the computed
reaction profile depicted in Fig. 2.14
In summary, we have described the first examples of Grubbs
complexes used to catalyze carbene C–H insertion from diazo
derivatives. On the whole, the first generation Grubbs catalyst
was the most versatile, although it did not always give the
highest yield. Our studies clearly demonstrate not only that
Grubbs complexes constitute a useful alternative to promote
intramolecular carbene C–H insertion, but also that no compe-
tition from the possible metathesis reactions arises when
starting from substrates with alkene or alkyne moieties.
We gratefully acknowledge financial support for this work
from MINECO-FEDER (Projects CTQ2015-64937-R, CTQ2016-
78205-P and CTQ2016-81797-REDC).
3 (a) B. Alcaide, P. Almendros and A. Luna, Chem. Rev., 2009, 109,
3817–3858; (b) S. Kotha, S. Misra, G. Sreevani and B. V. Babu, Curr.
Org. Chem., 2013, 17, 2776–2795.
4 G. Maas, Chem. Soc. Rev., 2004, 33, 183–190.
5 (a) M. K.-W. Choi, W.-Y. Yu and C.-M. Che, Org. Lett., 2005, 7,
1081–1084; (b) M. Grohmann and G. Maas, Tetrahedron, 2007, 53,
12172–12178; (c) M. K.-W. Choi, W.-Y. Yu, M.-H. So, C.-Y. Zhou,
Q.-H. Deng and C.-M. Che, Chem. – Asian J., 2008, 3, 1256–1265;
(d) C. Y. Zhou, J. S. Huang and C. M. Che, Synlett, 2010, 2681–2700;
(e) W.-W. Chan, T.-L. Kwong and W.-Y. Yu, Org. Biomol. Chem., 2012,
10, 3749–3755; ( f ) A. R. Reddy, C.-Y. Zhou, Z. Guo, J. Wei and
C.-M. Che, Angew. Chem., Int. Ed., 2014, 53, 14175–14180.
6 H. M. L. Davies and B. T. Parr, Rhodium Carbenes, in Contemporary
Carbene Chemistry, ed. R. A. Moss and M. P. Doyle, John Wiley &
Sons, Hoboken, NJ, 2014, pp. 363–403.
´
7 (a) M.-L. Bennasar, E. Zulaica, D. Sole and S. Alonso, Tetrahedron,
´
2007, 63, 861–866; (b) M.-L. Bennasar, E. Zulaica, D. Sole and
S. Alonso, Chem. Commun., 2009, 3372–3374; (c) M.-L. Bennasar,
´
D. Sole, E. Zulaica and S. Alonso, Org. Lett., 2011, 13, 2042–2045;
´
(d) M.-L. Bennasar, D. Sole, T. Roca and M. Valldosera, Tetrahedron,
´
2015, 71, 2246–2254; (e) D. Sole, M.-L. Bennasar, T. Roca and
M. Valldosera, Eur. J. Org. Chem., 2016, 1355–1366.
´
´
8 (a) D. Sole, F. Mariani, M.-L. Bennasar and I. Fernandez, Angew.
´
Chem., Int. Ed., 2016, 55, 6467–6470; (b) D. Sole, A. Amenta,
´
F. Mariani, M.-L. Bennasar and I. Fernandez, Adv. Synth. Catal.,
´
´
´
2017, 359, 3654–3664; (c) D. Sole, F. Perez-Janer and I. Fernandez,
Conflicts of interest
´
´
Chem. Commun., 2017, 53, 3110–3113; (d) D. Sole, F. Perez-Janer,
´
M.-L. Bennasar and I. Fernandez, Eur. J. Org. Chem., 2018, 4446–4455.
There are no conflicts to declare.
9 For RCM involving electron-deficient alkylidene species, see: T. R. Hoye,
C. S. Jeffrey, M. A. Tennakoon, J. Wang and H. Zhao, J. Am. Chem. Soc.,
2004, 126, 10210–10211.
10 X.-H. Pan, P. Jiang, Z.-H. Jia, K. Xu, J. Cao, C. Chen, M.-H. Shen and
H.-D. Xu, Tetrahedron, 2015, 71, 5124–5129.
Notes and references
1 (a) Ruthenium Catalysts and Fine Chemistry, in Topics in Organometallic
Chemistry, ed. C. Bruneau and P. H. Dixneuf, Springer-Verlag, Berlin, 11 D. S. Brown, M. C. Elliot, C. J. Moody, T. J. Mowlem, J. P. Marino Jr.
2004; (b) Ruthenium in Organic Synthesis, ed. S.-I. Murahashi, Wiley-VCH, and A. P. Padwa, J. Org. Chem., 1994, 59, 2447–2455.
Weinheim, 2005; (c) B. M. Trost, M. U. Frederiksen and M. T. Rudd, 12 See computational details in the ESI†.
Angew. Chem., Int. Ed., 2005, 44, 6630–6666.
2 (a) Handbook of Metathesis, ed. R. H. Grubbs, Wiley-VCH, Weinheim,
2003, vol. 1–3; (b) L. Yet, Org. React., John Wiley & Sons, Hoboken,
13 See, for example: (a) S. J. P’Poo and H.-J. Schanz, J. Am. Chem. Soc.,
´
2007, 129, 14200–14212; (b) K. Lafaye, L. Nicolas, A. Guerinot,
S. Reymond and J. Cossy, Org. Lett., 2014, 16, 4972–4975.
NJ, 2016, vol. 89, pp. 1–1303; (c) G. C. Vougioukalakis and 14 For instance, the reaction of the p-toluene sulfonamide analogue of
R. H. Grubbs, Chem. Rev., 2010, 110, 1746–1787; (d) O. M. Ogba,
N. C. Warner, D. J. O’Leary and R. H. Grubbs, Chem. Soc. Rev., 2018,
47, 4510–4544.
20 with Ru-1 resulted in the exclusive formation of the corres-
ponding pyrazolo[4,3-c]pyridine, arising from the cycloaddition
reaction.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 1160--1163 | 1163