Nitroazoles by dinitrofuroxan cycloreversion
Russ.Chem.Bull., Int.Ed., Vol. 64, No. 2, February, 2015
421
tion mixture was stirred until complete consumption of the
starting dinitrofuroxan (TLC monitoring), then water (5 mL)
was added, the organic layer was separated, and the
aqueous layer was extracted with CCl4 (3×3 mL). The comꢀ
bined organics were washed with water and dried with
MgSO4. Removal of the solvent in vacuo and purification of the
residue by silica gel column chromatography afforded target
product.
Synthesis of compounds 4a—d, 5a—f, 6, and 8a,b (general
procedure). Method B. To a stirred solution of dinitrofurꢀ
oxan (100 mg, 0.57 mmol) in CCl4 (2 mL), [bmim]BF4
(51 mg, 0.228 mmol) and the corresponding dipolarophile
(2.85 mmol) were added at room temperature. The reaction
was carried out and the products were isolated following the
method A.
8. J. F. Barnes, M. J. Barrow, M. M. Harding, R. M. Paton,
P. L. Ashcroft, J. Crosby, C. J. Joyce, J. Chem. Res. (M),
1979, 3601.
9. A. S. Kulikov, M. A. Epishina, I. V. Ovchinnikov, N. N.
Makhova, Russ. Chem. Bull. (Int. Ed.), 2007, 56, 1580 [Izv.
Akad. Nauk, Ser. Khim., 2007, 1521].
10. I. V. Seregin, I. V. Ovchinnikov, N. N. Makhova, D. V.
Lyubetsky, K. A. Lyssenko, Mendeleev Commun., 2003,
13, 230.
11. D. R. Brittelli, G. A. Boswell, J. Org. Chem., 1981, 46, 316.
12. I. V. Ovchinnikov, N. A. Popov, N. N. Makhova, L. I.
Khmel´nitskii, V. A. Shlyapochnikov, Mendeleev Commun.,
1995, 5, 231.
13. D. Giomi, F. M. Cordero, F. Machetti, in Comprehensive
Heterocyclic Chemistry III, Eds A. R. Katritzky, C. A. Ramsꢀ
den, E. F. V. Scriven, R. J. K. Taylor, Elsevier, Oxford,
2008, Vol. 4, p. 365.
Caution! Dinitrofuroxan has to be used only in solution in
CCl4 due to its tendency to explode.
4ꢀAminoꢀ3ꢀ(5ꢀmethylꢀ3ꢀnitroꢀ1,4,2ꢀdioxazolꢀ5ꢀyl)furoxan
(8b). Yield 31 mg (24%, method B). Yellow powder, m.p. 88—89 C.
Rf 0.43 (CHCl3). 1H NMR, : 2.93 (s, 3 H, CH3); 5.24 (br.s, 2 H,
NH2). 13C NMR, : 14.2 (CH3); 110.2 (C(3) furoxan cycle);
139.4 (C(5) dioxazole cycle); 150.2 (C—NH2); 164.8 (C—NO2).
14N NMR, : –40.3 (br.s, NO2). Found, m/z: 232.0665 [M + H]+.
C5H5N5O6. Calculated, m/z: 232.0273.
Quantum chemical calculations were carried out in the densiꢀ
ty functional theory (DFT) framework using Gaussian 98 softꢀ
ware.32 The structures corresponding to the global minimum
and reaction products were localized by DFT using the B3LYP
hybrid exchange correlation functional with the 6ꢀ31G(d) split
valence basis set by M05ꢀ2X method. Stationary points were
located by the Hessian matrix calculations by the absence of the
imaginary frequencies.
14. M. Pieroni, A. Lilienkampf, B. Wan, Y. Wang, S. G. Franzꢀ
blau, A. P. Kozikowski J. Med. Chem., 2009, 52, 6287.
15. D. Simoni, R. Rondanin, R. Baruchello, M. Rizzi, G. Grisoꢀ
lia, M. Eleopra, S. Grimaudo, A. Di Cristina, M. R. Pipiꢀ
tone, M. R. Bongiorno, M. Arico, F. P. Invidiata, M. Toꢀ
lomeo, J. Med. Chem., 2008, 51, 4796.
16. US Pat. Appl. 6638958; Chem. Abstr., 2003, 166, 698.
17. I. V. Ovchinnikov, N. N. Makhova, L. I. Khmel´nitskii,
Mendeleev Commun., 1993, 3, 210.
18. I. V. Ovchinnikov, N. N. Makhova, L. I. Khmel´nitskii,
Russ. Chem. Bull. (Engl. Transl.), 1995, 44, 702 [Izv. Akad.
Nauk, Ser. Khim., 1995, 722].
19. V. É. Turs, N. M. Lyapin, V. A. Shlyapochnikov, Bull. Acad.
Sci. USSR, Div. Chem. Sci. (Engl. Transl.), 1982, 31, 202
[Izv. Akad. Nauk, Ser. Khim., 1982, 214].
20. G. Barbaro, A. Battaglia, A. Dondoni, J. Chem. Soc. B,
1970, 588.
21. A. Dondoni, A. Mangini, S. Ghersetti, Tetrahedron Lett.,
1966, 39, 4789.
22. R. Huisgen, Angew. Chem., 1963, 78, 604.
23. A. E. Reed, F. J. Weinhold, Chem. Phys., 1983, 78, 4066.
24. Ionic Liquids in Synthesis, Vol. 1, Eds P. Wasserscheid,
T. Welton, WileyꢀVCH Verlag GmbH and Co. KGaA, Weinꢀ
heim, Germany, 2008, 367 pp.
25. Ionic Liquids in Synthesis, Vol. 2, Eds P. Wasserscheid,
T. Welton, WileyꢀVCH Verlag GmbH and Co. KGaA, Weinꢀ
heim, Germany, 2008, 353 pp.
26. I. R. Siddiqui, S. S. Shamim, M. A. Waseem, A. A. H. Abumꢀ
hdi, A. Srivastava, A. Srivastava, Tetrahedron Lett., 2013,
54, 5083.
27. Yu. S. Syroeshkina, V. V. Kuznetsov, V. V. Kachala, N. N.
Makhova, J. Heterocycl. Chem., 2009, 46, 1195.
28. V. Yu. Petukhova, L. L. Fershtat, V. V. Kachala, V. V. Kuzꢀ
netsov, D. V. Khakimov, T. S. Pivina, N. N. Makhova,
J. Heterocycl. Chem., 2013, 50, 326.
29. S. G. Zlotin, N. N. Makhova, Russ. Chem. Rev., 2010,
79, 543.
30. S. G. Zlotin, N. N. Makhova, Mendeleev Commun., 2010,
20, 63.
Authors are grateful to Merck KGaA for kindly proꢀ
viding ionic liquids.
This work was financially supported in parts by the
Russian Academy of Sciences (Program "Development of
Methods for the Synthesis of Chemical Compounds and
Design of Novel Materials").
References
1. L. L. Fershtat, I. V. Ovchinnikov, N. N. Makhova, Tetraheꢀ
dron Lett., 2014, 55, 2398.
2. R. Huisgen, Angew. Chem., Int. Ed., 1963, 2, 565.
3. A. Padwa, W. H. Pearson, in Synthetic Applications of
1,3ꢀDipolar Cycloaddition Chemistry toward Heterocycles and
Natural Products, Ed. H. Feuer, WileyꢀVCH, New York,
2002, p. 363.
4. P. Grünanger, P. VitaꢀFinzi, Isoxazoles, Part I, in The Chemꢀ
istry of Heterocyclic Compounds, Eds E. C. Taylor, A. Weissꢀ
berger, Wiley, New York, 1991, Vol. 49, p. 1.
5. C. Grundmann, P. Grünanger, The Nitrile Oxides, Springerꢀ
Verlag, Berlin—Heidelberg—New York, 1971.
6. L. I. Khmel´nitskii, S. S. Novikov, T. I. Godovikova,
Khimiya furoksanov. Stroenie i sintez [Chemistry of Furoxans:
Structure and Synthesis], Nauka, Moscow, 1996, 383 pp.
(in Russian).
31. N. N. Makhova, M. I. Pleshchev, M. A. Epishina, A. S.
Kulikov, Chem. Heterocycl. Compd. (Engl. Transl.), 2014, 50,
634 [Khim. Geterotsikl. Soedin., 2014, 690].
7. A. Dondoni, G. Barbaro, A. Battaglia, P. Giorgianni, J. Org.
Chem., 1972, 37, 3196.
32. M. J. Frish, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montꢀ