Chemical Science
Edge Article
6 For selected examples of electrophilic uorination of
alkenes, see: (a) S. Stavber and M. Zupan, Tetrahedron,
1986, 42, 5035–5043; (b) N. S. Zerov, V. V. Zhdankin,
A. S. Ko´zmin, A. A. Fainzilberg, A. A. Gakh, B. I. Vgrak and
S. V. Romaniko, Tetrahedron, 1988, 44, 6505–6514; (c)
S. Rozen, Y. Bareket and M. Kol, J. Fluorine Chem., 1993,
61, 141–146; (d) A. Gregorcic and M. Zupan, J. Org. Chem.,
1979, 44, 4120–4122; (e) D. D. DesMarteau, Z.-Q. Xu and
M. Witz, J. Org. Chem., 1992, 57, 629–635; (f) T. Umemoto
and G. Tomizawa, J. Org. Chem., 1995, 60, 6563–6570; (g)
T. Umemoto, S. Fukami, G. Tomizawa, K. Harasawa,
K. Kawada and K. Tomita, J. Am. Chem. Soc., 1990, 112,
8563–8575; (h) M. Okada, Y. Nakamura, H. Horikawa,
T. Inoue and T. Taguchi, J. Fluorine Chem., 1997, 82, 157–161.
7 (a) G. Sankar Lal, G. P. Pez and R. G. Syvret, Chem. Rev., 1996,
96, 1737–1756; (b) J. A. Wilkinson, Chem. Rev., 1992, 92,
505–519.
Conclusions
We have developed a novel palladium-catalyzed intermolecular
oxidative uoroesterication of vinylarenes. The reaction
affords monouorinated benzyl esters in good yields. The
mechanistic study shows that the key step of C–F bond
formation derives from the uoropalladation process and that
subsequent C–O bond formation comes from a sequential ionic
ligand exchange between the benzyl–Pd(II) intermediate and
CF3CO2H, oxidation by NFSI, then reductive elimination of the
high-valent Pd complex. Further applications of this trans-
formation and asymmetric uoroesterication of styrenes are in
progress.
Acknowledgements
We are grateful for nancial support from the National Basic
Research Program of China (973-2011CB808700), the National
Natural Science Foundation of China (21225210, 21121062, and
20923005), and the Science Technology Commission of the
Shanghai Municipality (11JC1415000).
8 For some reviews, see: (a) K. H. Jensen and M. S. Sigman, Org.
~
Biomol. Chem., 2008, 6, 4083–4088; (b) K. Muniz, Angew.
Chem., Int. Ed., 2009, 48, 9412–9423; (c) S. R. Chemler, Org.
Biomol. Chem., 2009, 7, 3009–3019; (d) R. I. McDonald,
G. Liu and S. S. Stahl, Chem. Rev., 2011, 111, 2981–3019. For
some selective examples, see: (e) G. Liu and S. S. Stahl,
J. Am. Chem. Soc., 2006, 128, 7179–7181; (f) E. J. Alexanian,
C. Lee and E. J. Sorensen, J. Am. Chem. Soc., 2005, 127,
Notes and references
1 (a) J. Kollonitsch, Biomedicinal Aspects of Fluorine Chemistry,
Elsevier Biomedical Press and Kodansha Ltd, New York,
1982, pp. 93–122; (b) Organouorine Chemistry, Principles
and Commercial Applications, ed. R. E. Banks, B. E. Smart
and J. C. Tatlow, Plenum, New York, 1994, ch. 3.
2 (a) J. Kollonitsch, A. A. Patchett, S. Marburg, A. L. Maycock,
L. M. Perkins, G. A. Doldouras, D. E. Duggan and
S. D. Aster, Nature, 1978, 274, 906–908; (b)
G. L. Grunewald, T. M. Caldwell, Q. Li, M. Slavica,
K. R. Criscione, R. T. Borchardt and W. Wang, J. Med.
Chem., 1999, 42, 3588–3601; (c) G. L. Grunewald,
M. R. Seim, R. C. Regier, J. L. Martin, C. L. Gee,
N. Drinkwater and K. R. Criscione, J. Med. Chem., 2006, 49,
5424–5433.
3 For reviews on uorination of organic compounds, see: (a)
P. T. Nyffeler, S. G. Duron, M. D. Burkart, S. P. Vincent and
C.-H. Wong, Angew. Chem., Int. Ed., 2005, 44, 192–212; (b)
M. Shimizu and T. Hiyama, Angew. Chem., Int. Ed., 2005,
44, 214–231; (c) P. M. Pihko, Angew. Chem., Int. Ed., 2006,
45, 544–547.
4 For some reviews, see: (a) A. A. Gakh, Top. Heterocycl. Chem.,
2012, 27, 33–64; (b) K. L. Kirk, Org. Process Res. Dev., 2008, 12,
305–321; (c) S. Rozen, Adv. Org. Synth., 2006, 2, 3–41; (d)
J. Baudoux and D. Cahard, Org. React., 2007, 69, 347–672.
¨
7690–7691; (g) J. Streuff, C. H. Hovelmann, M. Nieger and
~
K. Muniz, J. Am. Chem. Soc., 2005, 127, 14586–14587; (h)
´
´
~
A. Iglesias, E. G. Perez and K. Muniz, Angew. Chem., Int. Ed.,
´
~
2010, 49, 8109–8111; (i) C. Martınez and K. Muniz, Angew.
Chem., Int. Ed., 2012, 51, 7031–7034; (j) P. A. Sibbald and
F. E. Michael, Org. Lett., 2009, 11, 1147–1149; (k) A. Wang,
H. Jiang and H. Chen, J. Am. Chem. Soc., 2009, 131, 3846–
3847; (l) Y. Zhang and M. S. Sigman, J. Am. Chem. Soc., 2007,
129, 3076–3077.
9 For a review on the uorinating reagent as an oxidant, see:
(a) K. M. Engle, T.-S. Mei, X. Wang and J.-Q. Yu, Angew.
Chem., Int. Ed., 2011, 50, 1478–1491. For some examples
with Pd catalysts, see ref. 9f and g, and (b) K. Sun, Y. Li,
T. Xiong, J. Zhang and Q. Zhang, J. Am. Chem. Soc., 2011,
133, 1694–1697; (c) T. Xiong, Y. Li, Y. Lv and Q. Zhang,
Chem. Commun., 2010, 46, 6831–6833; (d) C. F. Rosewall,
P. A. Sibbald, D. V. Liskin and F. E. Michael, J. Am. Chem.
Soc., 2009, 131, 9488–9489; (e) X. Wang, D. Leow and
J.-Q. Yu, J. Am. Chem. Soc., 2011, 133, 13864–13867. Au, see:
(f) G. Zhang, L. Cui, Y. Wang and L. Zhang, J. Am. Chem.
Soc., 2010, 132, 1474–1475; (g) E. Tkatchouk, N. P. Mankad,
D. Benitez, W. A. Goddard III and F. D. Toste, J. Am. Chem.
Soc., 2011, 133, 14293–14300.
5 (a) M. G. Feldwick, P. S. Noakes, U. Prause, R. J. Mead and 10 For some recent reviews on the transition metal-catalyzed
P. J. Kostyniak, J. Biochem. Mol. Toxicol., 1998, 12, 41–52;
uorination, see: (a) V. V. Grushin, Acc. Chem. Res., 2010, 43,
160–171; (b) T. Furuya, A. S. Kamlet and T. Ritter, Nature,
2011, 473, 470–477; (c) A. Vigalok, Organometallics, 2011, 30,
4802–4810; (d) C. Hollingworth and V. Gouverneur, Chem.
Commun., 2012, 48, 2929–2942; (e) G. Liu, Org. Biomol.
Chem., 2012, 10, 6243–6248. For some examples for Pd-
catalyzed uorination, see: (f) D. A. Watson, M. Su,
ˇ
ˇ
ˇ ´
´
(b) O. Baszczynski, P. Jansa, M. Dracinsky, B. Klepetarova,
´
A. Holy, I. Votruba, Z. Janeba, E. D. Clercq and J. Balzarini,
Bioorg. Med. Chem., 2011, 19, 2114–2124; (c) F. D. Pozzo,
G. Andrei, A. Hol´y, J. Van Den Oord, A. Scagliarini, E. De
Clercq and R. Snoeck, Antimicrob. Agents Chemother., 2005,
49, 4843–4852; (d) H. C. Kolb and J. C. Walsh, Chimia,
2010, 64, 29–33.
´
G. Teverovskiy, Y. Zhang, J. Garcıa-Fortanet, T. Kinzel and
Chem. Sci.
This journal is ª The Royal Society of Chemistry 2013