8938
I. Kadota et al. / Tetrahedron Letters 44 (2003) 8935–8938
K.; Nakata, T. Org. Lett. 2002, 4, 3943–3946; (c) Mori,
2000, 65, 191–198; (c) Kopecky, D. J.; Rychnovsky, S. D.
Org. Synth. 2003, 80, 177–183.
13. (a) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R.
H. Angew. Chem., Int. Ed. Engl. 1995, 34, 2039–2041; (b)
Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem.
Soc. 1996, 118, 100–110.
Y.; Takase, T.; Noyori, R. Tetrahedron Lett. 2003, 44,
2319–2322; (d) Oishi, T.; Watanabe, K.; Murata, M.
Tetrahedron Lett. 2003, 44, 7315–7319.
4. Kadota, I.; Ohno, A.; Matsuda, K.; Yamamoto, Y. J.
Am. Chem. Soc. 2002, 124, 3562–3566.
14. NMR data for 34: 1H NMR (500 MHz, CDCl3) l
7.66–7.65 (m, 4H), 7.42–7.26 (m, 16H), 7.19 (d, J=8.5
Hz, 2H), 6.85 (d, J=8.5 Hz, 2H), 5.66 (dd, J=13.0, 3.0
Hz, 1H), 5.37 (dd, J=13.0, 2.0 Hz, 1H), 4.58 (d, J=12.0
Hz, 1H), 4.52 (d, J=11.5 Hz, 1H), 4.47 (d, J=12.0 Hz,
1H), 4.45 (d, J=12.0 Hz, 1H), 4.43 (d, J=12.0 Hz, 1H),
4.32 (d, J=11.5 Hz, 1H), 3.91 (ddd, J=9.0, 2.5, 2.5 Hz,
1H), 3.85 (ddd, J=9.5, 8.5, 6.0 Hz, 1H), 3.80 (s, 3H),
3.81–3.76 (m, 1H), 3.61–3.57 (m, 2H), 3.41 (dd, J=11.5,
4.5 Hz, 1H), 3.37–3.32 (m, 3H), 3.28 (ddd, J=11.0, 9.0,
4.0 Hz, 1H), 3.12–3.02 (m, 4H), 2.91 (ddd, J=11.5, 9.0,
4.0 Hz, 1H), 2.34–2.27 (m, 3H), 2.20 (ddd, J=11.5, 4.0,
4.0 Hz, 1H), 2.06 (ddd, J=11.5, 3.5, 3.5 Hz, 1H), 2.01
(dd, J=14.0, 7.5 Hz, 1H), 1.94–1.88 (m, 2H), 1.78 (ddd,
J=14.0, 8.5, 6.0 Hz, 1H), 1.68 (ddd, J=12.0, 12.0, 12.0
Hz, 1H), 1.58–1.35 (m, 4H), 1.29 (s, 3H), 1.22 (s, 3H),
1.14 (s, 3H), 1.03 (s, 9H); 13C NMR (125 MHz, CDCl3)
l 159.0, 141.7, 138.6, 138.3, 135.6, 134.0, 130.6, 129.5,
128.9, 128.3, 127.6, 127.5, 127.4, 127.0, 113.7, 81.9, 80.1,
79.8, 79.4, 78.2, 78.0, 77.5, 77.3, 77.1, 77.0, 76.9, 76.7,
76.5, 76.3, 76.0, 75.4, 72.9, 71.0, 70.7, 69.0, 65.8, 59.9,
55.2, 44.6, 39.6, 35.5, 35.1, 30.4, 28.9, 26.9, 21.9, 20.3,
19.1, 16.6.
5. (a) Hori, N.; Matsukura, H.; Matsuo, G.; Nakata, T.
Tetrahedron Lett. 1999, 40, 2811–2814; (b) Hori, N.;
Matsukura, H.; Nakata, T. Org. Lett. 1999, 1, 1099–
1101; (c) Matsuo, G.; Hori, N.; Nakata, T. Tetrahedron
Lett. 1999, 40, 8859–8862.
6. (a) Nicolaou, K. C.; Duggan, M.; Hwang, C.-K.; Somers,
P. K. J. Chem. Soc., Chem. Commun. 1985, 1359–1362;
(b) Nicolaou, K. C.; Prasad, C. V. C.; Somers, P. K.;
Hwang, C.-K. J. Am. Chem. Soc. 1989, 111, 5330–5334.
7. Nicolaou, K. C.; Nugiel, D. A.; Couladouros, E.; Hwang,
C.-K. Tetrahedron 1990, 46, 4517–4552.
8. Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.;
Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989–
1993.
9. Kadota, I.; Sakaihara, T.; Yamamoto, Y. Tetrahedron
Lett. 1996, 37, 3195–3198.
10. For an example of the direct conversion of MPM ethers
to the corresponding silyl ethers, see: Oriyama, T.;
Yatabe, K.; Kawada, Y.; Koga, G. Synlett 1995, 45–46.
11. Kadota, I.; Takamura, H.; Sato, K.; Ohno, A.; Matsuda,
K.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 46–47.
12. For the original conditions, see: (a) Dahanukar, V. H.;
Rychnovsky, S. D. J. Org. Chem. 1996, 61, 8317–8320;
(b) Kopecky, D. J.; Rychnovsky, S. D. J. Org. Chem.