7594
R. T. Brown et al. / Tetrahedron 56 (2000) 7591–7594
2.61–2.43 (m, 4×CHMe2), 1.20–1.05 (m, 4×CHMe2).
Procedure B. A suspension of dried morphine (4.0 g,
14 mmol) and the imidate (36.1 g, 64 mmol) in dry
CH2Cl2 (100 mL) was stirred under argon at room tempera-
ture, while BF3·Et2O (7.8 mL, 64 mmol) was added. After
90 min, the solution was evaporated in vacuo to a gum,
which was crystallised from MeOH to afford the
morphine-3,6-diglucuronate (5.4 g, 35%) as needles, mp
229–230ЊC.
Found: C, 54.7; H, 7.4. C19H30O10 requires: C, 54.6; H, 7.2.
Procedure B. The tetra-isobutyrate (102 g, 0.21 mol) in
CH2Cl2 (100 mL) was stirred in a sealed vessel with sat.
aq. (880) ammonia (40 mL) overnight. The solution was
washed with water (50 mL) and then brine (50 mL), dried,
filtered and evaporated to give the gummy hemi-acetal
(64 g, 73%) as an a/b mixture similar to that above.
Morphine-3,6-di-b-d-glucuronide 4. Aq. NaOH (1.5 M,
12 mL) was added to a stirred suspension of the above
diglucuronate (2.3 g, 2.1 mmol) in MeOH (68 mL), and
the mixture left overnight. The solution was then acidified
with glacial acetic acid, the precipitate filtered and washed
with MeOH (ϳ15 mL). Drying at 60Њ under high vacuum
afforded morphine-3,6-diglucuronide (1.2 g, 89%) as a
white solid, which formed microcrystals from aq. MeOH,
mp 243–244ЊC (dec.) [a]DϪ188 (c 10 H2O); lmax(H2O):
282, 236, 208 nm; dH (500 MHz, D2O): 6.99 (d, J8 Hz,
H-2), 6.75 (d, J8 Hz, H-1), 5.84 (bd, J10 Hz, H-8), 5.38
(bd, J10 Hz, H-7), 5.28 (d, J6 Hz, H-5), 5.07 (d,
J7 Hz, H-10), 4.70 (d, J8 Hz, H-100), 4.56 (m, H-6),
4.22 (m, H-13), 3.84 (d, J8 Hz, H-50), 3.73 (d, J9 Hz,
H-500), 3.61–3.56 (m, H-40, 30, 20), 3.54 (t, J9 Hz, H-300),
3.51 (t, J9 Hz, H-400), 3.40 (dd, J9,8 Hz, H-200), 3.31 (d,
J20 Hz, H-12eq), 3.06 (ddd, J13,12,4.5 Hz, H-16ax), 2.97
(s, NMe), 2.26 (dd, J19,6 Hz, H-12ax), 2.01 (ddd,
J13.5,12,4 Hz, H-15ax), 1.84 (bd, J12 Hz, H-15eq).
Found: C, 50.5; H, 6.4; N, 1.9. C29H35NO15·3H2O requires:
C, 50.4; H, 6.0; N, 2.0.
Methyl 2,3,4-tri-O-isobutyryl-1-O-trichloroacetimidoyl-
a-d-glucopyranuronate 5. To a stirred solution of the
above a/b mixture of hemiacetals (82.4 g, 0.20 mol) in
CH2Cl2 (100 mL) was added trichloroacetonitrile (74 mL,
0.73 mol), followed by anhydrous sodium carbonate
(12.4 g, 0.12 mol), and the mixture left to stir overnight.
Filtration and evaporation in vacuo then yielded the title
product 5 as a semicrystalline gum (95.0 g, 85%), which
crystallised with dry isopropanol as prisms, mp 80–1ЊC
[a]Dϩ67 (c
5
CHCl3); nmax(film): 3320, 1750,
1680 cmϪ1; m/z (CI): 579 (MϩϩNH3), 546, 506, 401, 348;
dH (300 MHz, CDCl3): 8.72 (s, NH), 6.66 (d, J3.5 Hz,
H-1), 5.70 (t, J10 Hz, H-3), 5.30 70 (t, J10 Hz, H-4),
5.20 (dd, J10,3.5 Hz, H-2), 4.51 (d, J10 Hz, H-5), 3.75
(s, OMe), 2.60–2.43 (m, 3×CHMe2), 1.17–1.06 (m,
3×CHMe2). Found: C, 44.8; H, 5.3; Cl, 18.4; N, 2.6.
C21H30Cl3NO10 requires: C, 44.8; H, 5.3; Cl, 18.9; N, 2.5.
Morphine-3,6-di(methyl 2,3,4-tri-O-isobutyryl-b-d-gluco-
pyranuronate) 10. Procedure A. A suspension of dried
morphine (2.0 g, 7.0 mmol) and the above imidate (15.8 g,
28.1 mmol) in dry CH2Cl2 (40 mL) containing 4A molecu-
lar sieves was stirred under argon at room temperature,
while BF3·Et2O (355 mL, 4.0 g, 28.1 mmol) was added.
After 30 min, virtually all of the starting materials had
gone into solution and stirring was continued for 2 days.
More CH2Cl2 (20 mL) was added, the solution washed
with saturated aq. sodium bicarbonate (50 mL), water and
brine before being dried. Filtration and evaporation in vacuo
afforded a semisolid residue, which was taken up in CHCl3/
MeOH 40:1 and flash chromatographed on silica. Elution
with CHCl3/MeOH 9:1 gave a crude product (8.5 g) consist-
ing (TLC/NMR) of ϳ80% diglucuronate and ϳ20% excess
sugar. Trituration with EtOH yielded pure morphine-3,6-
diglucuronate 10 (4.6 g, 60%) as colourless needles, mp
229–230ЊC [a]DϪ110 (c 1.3 CHCl3); nmax(EtOH): 282,
235, 210 nm; nmax(film): 1750 cmϪ1; m/z (FAB): 1086
(MHϩ), 686, 401; dH (300 MHz, CDCl3): 6.76 (bd, J
8 Hz, H-2), 6.47 (d, J8 Hz, H-1), 5.97 (t, J9.5 Hz,
H-30), 5.81 (d, J8 Hz, H-1), 5.57 (d, J10 Hz, H-8),
5.40 (t, J9.5 Hz, H-300), 5.27–5.21 (dd, J9.5,8 Hz,
H-20; dd, J9.5,8 Hz, H-200; d, J10 Hz, H-7), 5.20 (t,
J9.5 Hz, H-40), 5.13 (t, J9.5 Hz, H-400), 4.72 (d, J
5 Hz, H-5), 4.71 (d, J8 Hz, H-100), 4.64 (d, J9.5 Hz,
H-50), 4.05 (d, J9.5 Hz, H-500), 3.98 (dd, J5,1.5 Hz,
H-6), 3.75 (s, OMe), 3.69 (s, OMe), 3.34 (dd, J6,3 Hz,
H-13), 3.02 (d, J19 Hz, H-12eq), 2.60–2.37 (m, H-16eq,
6×CHMe2), 2.43 (s, NMe), 2.41 (ddd, J13.5,12,4 Hz,
H-16ax), 2.26 (dd, J19,6 Hz, H-12ax), 2.01 (ddd, J
13.5,12,4 Hz, H-15ax), 1.84 (bd, J12 Hz, H-15eq), 1.34–
1.08 (m, 6×CHMe2). Found: C, 60.6; H, 6.9; N, 1.3.
C55H75NO21 requires: C, 60.8; H, 6.9; N, 1.3.
Acknowledgements
We acknowledge the receipt of EPSRC TT (SPM) and
CASE (NEC) Studentships, a DTI SMART Award to
Ultrafine, and thank Dr S. Joel (St. Bartholemew’s Hospital,
London) for his collaboration.
References
1. Osbourne, R.; Joel, S.; Trew, D.; Slevin, N. The Lancet 1988,
828.
2. Scheinmann, F.; Lumbard, K. W.; Brown, R. T.; Mayalarp,
S. P.; Carter, N. E. Int. Patent WO 93/03051 (PCT/GB92/01449;
EP0597915; US5977326) 1993.
3. Brown, R. T.; Carter, N. E.; Lumbard, K. W.; Scheinmann, F.
Tetrahedron Lett. 1995, 36, 8661–8664.
4. Brown, R. T.; Carter, N. E.; Scheinmann, F.; Turner, N. J.
Tetrahedron Lett. 1995, 1117–1120 (EP0733120).
5. Berrang, B.; Brine, G. A.; Carroll, F. I. Synthesis 1997, 1165–
1168.
6. Mayalarp, S. P. PhD Thesis, University of Manchester, 1993.
7. Schmidt, R. R. Angew. Chem., Int. Ed. Engl. 1986, 25, 212–
235.
8. Brown, R. T.; Mayalarp, S. P.; McGown, A. T.; Hadfield, J. A.
J. Chem. Res. Synop. 1993, 496–497.
9. Jenkins, G. N.; Stachulski, A. V.; Scheinmann, F.; Turner, N. J.
Tetrahedron: Asymmetry 2000, 11, 413–416.