Angewandte
Chemie
dam, Z. Hantosi, M. M. Greenberg, J. Am. Chem. Soc. 2002, 124,
3263; c) S. Iwai, Chem. Eur. J. 2001, 7, 4343.
will be sufficiently long-lived to warrant attention by DNA
repair enzymes.
[4] a) J. Stubbe, J. W. Kozarich, Chem. Rev. 1987, 87, 1107; b) H.
Sugiyama, C. Xu, N. Murugesan, S. M. Hecht, J. Am. Chem. Soc.
1985, 107, 4104; c) L. E. Rabow, J. Stubbe, J. W. Kozarich, J. Am.
Chem. Soc. 1990, 112, 3196; d) L. E. Rabow, G. H. McGall, J.
Stubbe, J. W. Kozarich, J. Am. Chem. Soc. 1990, 112, 3203.
[5] For reviews see: a) C. von Sonntag, The Chemical Basis of
Radiation Biology, Taylor and Francis, London, 1987; b) M. M.
Greenberg in Comprehensive Natural Products Chemistry, Vol. 7
(Ed. E. T. Kool), Pergamon, Amstedam, 1999, p. 371; c) Z. Xi,
I. H. Goldberg in Comprehensive Natural Products Chemistry,
Vol. 7 (Ed. E. T. Kool), Pergamon, Amstedam, 1999, p. 553.
[6] a) R. A. O. Bennett, P. S. Swerdlow, L. F. Povirk, Biochemistry
1993, 32, 3188; b) L. F. Povirk, W. Houlgrave, Environ. Mol.
Mutagen. 1988, 11, 461; c) L. F. Povirk, I. H. Goldberg, Biochi-
mie 1987, 69, 8150.
[7] a) H. J. Lenox, C. P. McCoy, T. L. Sheppard, Org. Lett. 2001, 3,
2415; b) M. Kotera, A. Bourdat E. Defrancq, J. Lhomme, J. Am.
Chem. Soc. 1998, 120, 11810; c) C. Tronche, B. K. Goodman,
M. M. Greenberg, Chem. Biol. 1998, 5, 263; d) J. T. Hwang,
K. A. Tallman, M. M. Greenberg, Nucleic Acids Res. 1999, 27,
3805; e) B. K. Goodman, M. M. Greenberg, J. Org. Chem. 1996,
61, 2.
A preliminary characterization of the effect of 1 on duplex
thermal stability was carried out with the dodecamer 14b. The
lability of 1 at 558C led us to investigate the hybridization of
14b to a complement containing A opposite the lesion at
378C to avoid cleaving 1 during hybridization. The suitability
of the hybridization conditions was established by using the
tetrahydrofuran abasic site analogue, 17d. Identical Tm's were
obtained for 17d whether the duplex was hybridized at 378C
(30 min, followed by 2 h at 258C) or at 958C (5 min, followed
by slow cooling to 258C). Consequently, the mild conditions
(378C) were used for the hybridization of 14b, and the
temperature was not allowed to go above 558C during the
melting process. The Tm for 17b (37.18C, 2.2 mm) did not
change over three annealing/melting cycles.[15] Furthermore,
no decomposition of 14b subjected to the identical heating
conditions side-by-side with 17b was detected by HPLC.[15]
The Tm for the resulting duplex containing 1 (17b) was
comparable to that for 17d, as might be expected for the
structurally similar abasic sites. The higher Tm measured for
17c may reflect the stabilization of the duplex due to p-
stacking of the o-nitroveratryl groups.
[8] a) J. J. Vasseur, D. Peoc'h, B. Rayner, J. L. Imbach, Nucleosides
Nucleotides 1991, 10, 107; b) T. Horn, K. Downing, Y. Gee, M. S.
Urdea, Nucleosides Nucleotides 1991, 10, 299.
In conclusion, we have developed an efficient method for
synthesizing oligonucleotides that contain the C4’-oxidized
abasic site, 1, a common alkali-labile lesion. Despite the
lability of 1, the studies described above clearly indicate that
the lesion is amenable to routine handling necessary for
carrying out biochemical and biophysical characterization.
Specifically, the C4’-oxidized abasic site 1 is sufficiently stable
to enable examination of its interactions in a variety of
environments such as those that include polymerases and
DNA repair enzymes. The ability to store oligonucleotides
that contain a stable, convenient photochemical precursor for
the C4’-oxidized abasic site 6 in oligonucleotides will facilitate
such studies on the lesion.
Experimental procedures for the synthesis of 6, a descrip-
tion of oligonucleotide synthesis cycles, deprotection, photol-
ysis, melting experiments, and HPLC analysis conditions are
available in the Supporting Information. A table of the UV-
melting data and sample melt for 17b, HPLC traces of 14b
before and after 3 annealing/melting cycles, mass spectra of
14–16 are also available.
[9] a) G. R. Stuart, R. W. Chambers, Nucleic Acids Res. 1987, 15,
7451; b) M. Takeshita, C. N. Chang, F. Johnson, S. Will, A. P.
Grollman, J. Biol. Chem. 1987, 262, 10171.
[10] a) J. A. Wilde, P. H. Bolton, A. Mazumder, M. Manoharan, J. A.
Gerlt, J. Am. Chem. Soc. 1989, 111, 1894; b) M. Manoharan, S. C.
Ransom, A. Mazumder, J. A. Gerlt, J. A. Wilde, J. A. Withka,
P. H. Bolton, J. Am. Chem. Soc. 1988, 110, 1620.
[11] S. A. Scaringe, F. E. Wincott, M. H. Caruthers, J. Am. Chem. Soc.
1998, 120, 11820.
[12] a) G. H. McGall, A. D. Barone, M. Diggelmann, S. P. A. Fodor,
E. Gentalen, N. Ngo, J. Am. Chem. Soc. 1997, 119, 5081; b) M. C.
Pirrung, Angew. Chem. Int. Ed. 2002, 41, 1276; c) V. N. R. Pillai,
Synthesis 1980, 1.
[13] Y. Honda, A. Ori, G. Tsuchibashi, Chem. Lett. 1989, 1259.
[14] E. J. Corey, B. W. Erickson, J. Org. Chem. 1971, 36, 3553.
[15] See Supporting Information.
[16] a) Y. Roupioz, J. Lhomme, M. Kotera, J. Am. Chem. Soc. 2002,
124, 9129; b) S. Shibutani, M. Takeshita, A. P. Grollman, J. Biol.
Chem. 1997, 272, 13916.
Received: June 10, 2003
Revised: August 25, 2003 [Z52102]
Keywords: bioorganic chemistry · DNA damage ·
.
oligonucleotides
[1] a) H. Kamiya, Nucleic Acids Res. 2003, 31, 517; b) D. Wang,
D. A. Kreutzer, J. M. Essigmann, Mutat. Res. 1998, 400, 99.
[2] a) J. Cadet, C. D'Ham, T. Douki, J. P. Pouget, J. L. Ravanat, S.
Sauvaigo, Free Radical Res. 1999, 29, 541; b) M. Dizdaroglu, Free
Radical Res. 1998, 29, 551; c) L. Gros, M. Saparbaev, J. Laval,
Oncogene 2002, 21, 8905.
[3] a) J. Butenandt, L. T. Burgdorf, T. Carell, Synthesis 1999, 1085;
b) K. Haraguchi, M. O. Delaney, C. J. Wiederholt, A. Samban-
Angew. Chem. Int. Ed. 2003, 42, 5882 –5885
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5885