5540
J. Witherington et al. / Bioorg. Med. Chem. Lett. 16 (2006) 5538–5541
Table 3. B-ring SAR in the b-methyl series
we have systematically identified the key pharmaco-
phoric features responsible for high inhibitory potency.
In common with the literature the SAR around the
A-ring suggests an ortho methyl group is optimal as is
the presence of an ortho methoxy moiety in the B-ring.
Unfortunately incorporation of both these potency
enhancing substituents into the more potent b-methyl
propionic acid series does not lead to an additive in-
crease in potency. In vivo profiling of two of the more
potent inhibitors suggests oral bioavailability is achiev-
able with this series.
H
H
N
N
O
O
N
CO2H
R
Compound
R
R/S
pKi a4b1
16
17
18
19
20
21
22
23
24
25
26
27
28
29
2-Cl
R
R
R
R
R
R
R
S
S
S
S
S
S
S
9.0
8.4
8.7
8.2
9.0
9.1
8.6
8.7
7.7
8.3
7.3
8.6
7.6
7.7
2-OCF3
2-OEt
2-Et
2-Me
3-Cl
3-Me
2-Cl
References and notes
2-OCF3
2-OEt
2-Et
1. Hemler, M. E.; Elices, M. J.; Parker, C.; Takada, Y.
Immunol. Rev. 1990, 114, 45.
2. Springer, T. A. Cell 1994, 76, 301.
3. Elices, M. J. Curr. Opin. Anti-Inflam. Immunomod. Invest.
Drugs 1999, 1, 14.
4. (a) Gearing, A. J. H.; Newman, W. Immunol. Today 1993,
14, 506; (b) Hemler, M. E. Annu. Rev. Immunol. 1990, 8,
365.
2-Me
3-Cl
3-Me
5. Abraham, W. M.; Sielczak, M. W.; Ahmed, A.; Cortes,
A.; Lauredo, I. T.; Kim, J.; Pepinsky, B.; Benjamin, C. D.;
Leone, D. R.; Lobb, R. R. J. Clin. Invest. 1994, 93, 776.
6. Seiffge, D. J. Rheumatol. 1996, 23, 2086.
7. (a) Tubridy, N.; Behan, P. O.; Caplildeo, R.; Chaudhuri,
A.; Forbes, R.; Hawkins, C. P.; Hughes, R. A. C.; Palace,
J.; Sharrack, B.; Swingler, R.; Young, C.; Mosley, I. F.;
MacManus, D. G.; Donoghue, S.; Miller, D. H. Neurology
1999, 53, 466; (b) Keszthelyi, E.; Karlik, S.; Hyduk, S.;
Rice, A.; Gordon, G.; Yednock, T.; Horner, H. Neurology
1996, 47, 1053.
15) possibly due to the formation of an intra-molecular
hydrogen bond with the acidic urea functionality. Com-
pound 15 displayed the most encouraging PK profile
(%Fpo = 49, 84, 166, 185) and although the group size
was small (n = 4) the exposure and clearance appeared
highly variable suggesting events such as recycling and
transporter mediated absorption and/or elimination
may be contributing to the high, but variable,
bioavailability.
8. Podolsky, D. K.; Lobb, R.; King, N.; Benjamin, C. D.;
Pepinsky, B.; Sehgal, P.; deBaumont, M. J. Clin. Invest.
1993, 92, 972.
The single enantiomers of the pyridone analogue 15
were obtained15 by treatment of the known acid16 30
with oxalyl chloride followed by coupling with commer-
cially available (2S)-2-amino-2-phenylethanol to afford
the diastereomers 31a and 31b which were readily sepa-
rable using conventional column chromatography.
Reduction of 31b with lithium borohydride afforded
the corresponding alcohol 32 which was hydrolysed to
the corresponding acid then converted to the methyl es-
ter 33. Treatment of 33 with methane sulfonyl chloride
afforded the corresponding mesylate which was then
reacted with the known pyridone10 34 to afford the inter-
mediate ester which was then hydrolysed with lithium
hydroxide to afford the desired analogue 15 in good
overall yield.
9. (a) Polman, C. H.; O’Connor, P. W.; Havrdova, E.;
Hutchinson, M.; Kappos, L.; Miller, D. H.; Phillips, J.
T.; Lublin, F. D.; Giovannoni, G.; Wajgt, A.; Toal, M.;
Lynn, F.; Panzara, M. A.; Sandrock, A. W. N. Engl. J.
Med. 2006, 354, 899; (b) Sandborn, W. J.; Colombel, J.
F.; Enns, R.; Feagan, B. G.; Hanauer, S. B.; Lawrance,
I. C.; Panaccione, R.; Sanders, M.; Schreiber, S.;
Targan, S.; van Deventer, S.; Goldblum, R.; Despain,
D.; Hogge, G. S.; Rutgeerts, P. N. Engl. J. Med. 2005,
353, 1912.
10. Witherington, J.; Bordas, V.; Gaiba, A.; Green, P. M.;
Naylor, A.; Parr, N.; Smith, D. G.; Takle, A. K.; Ward, R.
W. Bioorg. Med. Chem. Lett. 2006, 16, 2256.
11. Lin, K.-C.; Ateeq, H. S.; Hsiung, S. H.; Chong, L. T.;
Zimmerman, C. N.; Castro, A.; Lee, W.-C.; Hammond, C.
E.; Kalkunte, S.; Chen, L.-L.; Pepinsky, R. B.; Leone, D.
R.; Sprague, A. G.; Abraham, W. M.; Gill, A.; Lobb, R.
R.; Adams, S. P. J. Med. Chem. 1999, 42, 920.
In summary, having previously successfully employed a
pyridone nucleus as a bioisostere for an amide moiety,
Table 4. Rat pharmacokinetic profiles of selected VLA-4 antagonists
Compound
DNAUCa (min kg/L)
Fb,c (%)
Cl (iv) (mL/min/kg)
t1/2 (h)
VSS (L/kg)
2
11
13
15
6
3
0.5
3
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
14
154 82
4
22 15
121 72
16
9
7
12
1.3 0.7
1.4 0.8
0.6 0.1
0.6 0.4
a Dose normalised area under the curve (0–8 h).
b Male Sprague–Dawley rats (n = 3–4, SD).
c Dose: iv infusion at 1 mg/kg; po at 3 mg/kg (n = 3–4, SD).