1740
P. Styring, S. S. F. Chong / Tetrahedron Letters 47 (2006) 1737–1740
A. V.; Cobley, K. N.; Orr, D. C.; Storer, R.; Weingarten,
G. G.; Weir, M. P. J. Med. Chem. 1992, 35, 3080;
Wonacott, A.; Cooke, R.; Hayes, F. R.; Hann, M. M.;
Jhoti, H.; McMeekin, P.; Mistry, A.; Murry-Rust, P.;
Singh, O. M. P.; Weir, M. P. J. Med. Chem. 1993, 36,
3113.
possessed a stereoexcess of 6-(R) and this suggested that
while being chemically identical to 6-(R) obtained from
the pure enantiomer of 2-aminobutanol (albeit with
some contamination from the other diastereoisomer), it
had a different conformational structure. It is proposed
that the conformation in the product is fixed by that in
the self-assembled intermediate, and is a structure with
low local minimum energy rather than the global mini-
mum formed using the homochiral reagent. The change
in conformation would then lead to a different bioactiv-
ity, most likely through the formation of a new polymor-
phic crystal form.14 This is reflected in the significantly
different result in the toxicity test. The difference is most
striking when comparisons are made between the prod-
ucts formed using the homochiral substrates and the
racemic substrates. If we compare the LC50 results for
5 we see that the value obtained for the racemic product
(87 10 lg/ml) is intermediate between those of the pure
(S)-(101 12 lg/ml) and pure (R)-(78 10 lg/ml) prod-
ucts. It is clear from the 1H NMR spectrum of 6 obtained
using the racemic substrate that it has a de of 83%, en-
riched with the (R)-substrate. Therefore, the LC50 results
for 6-(R/S) (45 6 lg/ml) should closely match 6-(R)
(102 20 lg/ml), which is clearly not the case.
6. Jones, J. Amino Acid and Peptide Synthesis; Oxford
University Press: New York, 1992; p 34.
7. Birch, D.; Hill, R. R.; Jeffs, G. E.; North, M. Chem.
Commun. 1999, 941.
8. In a typical procedure: To a solution of the free penicillic
V acid 4 (5.23 mmol) in DMF (50 cm3) were added
sequentially DIPEA (5.34 mmol), (R/S)-2-aminobutanol
(5.38 mmol) and TBTU (5.36 mmol). The resulting solu-
tion was stirred at room temperature overnight, before
partitioning between EtOAc (ca. 150 cm3) and water
(50 cm3). The organic phase was removed and the aqueous
phase was extracted with EtOAc (2 · 50 cm3). The com-
bined organic phases were washed with 2 N HCl (50 cm3),
saturated aqueous NaHCO3 (50 cm3) and brine (50 cm3)
before drying (MgSO4). The solvent was removed in
vacuo, and the resulting residue was purified by flash
column chromatography (silica gel, eluent system: 1–10%
MeOH in CH2Cl2 gradually increasing the polarity) to
22
afford 6 as a white solid. Yield = 23%; mp 85.1 ꢁC. ½aꢂD
+56.20 (c 0.01192, CDCl3). Elemental analysis: Found: C,
59.97; H, 7.03; N, 10.28%. Calcd for C27H36O5N4SÆ
0.5H2O (FW 537.66): C, 60.32; H, 6.93; N, 10.42%. IR
(KBr disc): mmax/cmꢀ1 3700–3140 (br, OH); 3080, 3040
(–CONH–); 2900–2800 (saturated C–H); 1650 (C@O
stretch, amide I band); 1530 (amide II); 1250 (C–O);
760, 700 (monosubstituted benzene ring).
Acknowledgements
The University of Hull is acknowledged for the provi-
sion of funding for a studentship to SSFC. Hull Analy-
tical Services are thanked for the provision of spectral
and analytical services.
1H NMR (400 MHz, DMSO): dH 0.83 (3H, t, J 7.6 and
7.3, CH2CH3); 1.14 (3H, s, terminal CH3); 1.33 (1H, m,
0
Hl ); 1.50 (3H, s, terminal CH3); 1.55 (1H, m, Hl); 3.27
0
(1H, m, Hj); 3.35 (1H, m, Hj ); 3.46 (1H, d, J 12.2, Ha);
3.66 (1H, m, Hk); 3.89 (1H, dd, J 12.2 and 8.3, Hh); 4.26,
0
4.28 (2H, dABq, J 13.6 and 2.9, Hg, Hg ); 4.40 (1H, t, J 8.3
References and notes
0
and 7.8, Hb); 4.54 (2H, ABq, J 14.9 and 14.7, Hf, Hf ); 4.64
(1H, t, J 5.4 and 5.1, OH); 4.96 (1H, t, J 8.0 and 7.8, Hc);
6.94 (3H, m, aromatic protons ortho/para to phenoxygen);
7.18–7.32 (7H, m, aromatic ring protons); 7.54 (0.915H, d,
J 8.6, Hi, diastereomer); 7.64 (0.085H, d, J 8.8, Hi,
diastereomer); 8.15 (1H, t, J 8.1 and 8.8, Hd); 8.57 (1H, t, J
6.1 and 5.8, He). MS (EI): m/z 528 [M]+; 497
[MꢀCH2CH3]+; 260, 231, 91 [PhCH2]+.
1. Gallo, R. C.; Montaigner, L. Sci. Am. 1988, 259, 40.
2. Coffin, J.; Hasse, A.; Levy, J. A.; Montagnier, L.;
Oroszlan, S.; Teich, N.; Temin, H.; Toyoshima, K.;
Varmus, H.; Vogt, P.; Weiss, R. Science (London) 1986,
232, 697.
3. Holmes, D. S.; Bethell, R. C.; Cammack, N.; Clemens, I.
R.; Kitchin, J.; McMeekin, P.; Mo, C. L.; Orr, D. C.;
Patel, B.; Paternoster, I. L.; Storer, R. J. Med. Chem.
1993, 36, 3129.
9. Allinger, N. L. J. Am. Chem. Soc. 1977, 99, 8127.
10. Yuk, Y. H.; Lii, J. H. J. Am. Chem. Soc. 1989, 111,
8551.
11. Toxicity tests were carried out by the Department of
Biological Sciences at the University of Hull.
12. Liu, Y. B.; Peterson, H.; Kimura, D. A.; Schubert, D.
J. Neurochem. 1997, 69, 581.
13. Adullah, M. A. Eur. J. Biochem. 1980, 112, 331.
14. Buttar, D.; Charlton, M. H.; Docherty, R.; Starbuck, J.
J. Chem. Soc., Perkin Trans. 2 1988, 763.
4. Humber, D. C.; Bamford, M. J.; Bethell, R. C.; Cammack,
N.; Cobley, K. N.; Evans, D. N.; Gray, N. M.; Hann, M.
M.; Orr, D. C.; Saunder, J.; Shenoy, B. E. V.; Storer, R.;
Weingarten, G. G.; Wyatt, P. G. J. Med. Chem. 1993, 36,
3120.
5. Daopin, S.; Piez, K. A.; Ogawa, Y.; Davies, D. R. Science
1992, 257, 396; Humber, D. C.; Cammack, N.; Coates, J.