Journal of the American Chemical Society
Page 4 of 5
1. (a) Li, J. J.; Corey, E. J. Drug Discovery. Practices, Processes, and
sequestered as an imine and did not interfere in the reactions to
reform sulfonamides.
Perspectives; Wiley, 2013. (b) Tishler, M. Molecular Modification in
Modern Drug Research. In Molecular Modification in Drug Design;
American Chemical Society: New York, NY, 1963; Chapter 1. (c) Patani,
G. A.; LaVoie, E. J. Bioisosterism: A Rational Approach in Drug Design.
Chem. Rev. 1996, 96, 3147−3176.
1
2
3
Scheme 4. Late-Stage Metabolite Synthesis and Isotopic
Labeling through N-S Cleavage and Reconstitution
4
5
6
7
8
9
2. (a) Lesch, J. E. The First Miracle Drugs: How the Sulfa Drugs
Transformed Medicine; Oxford University Press, 2006. (b) Li, J. J.; Corey,
E. J. Drug Discovery. Practices, Processes, and Perspectives; Wiley, 2013.
(c) Smith, B. R.; Eastman, C. M.; Njardarson, J. T. Beyond C, H, O, and N!
Analysis of the Elemental Composition of U.S. FDA Approved Drug
Architectures. J. Med. Chem. 2014, 57, 9764. (d) Ilardi, E. A.; Vitaku, E.;
Njardarson, J. T. Data-Mining for Sulfur and Fluorine: An Evaluation of
Pharmaceuticals To Reveal Opportunities for Drug Design and Discovery.
J. Med. Chem. 2014, 57, 2832. (e) Scott, K. A.; Njardarson, J. T. Analysis
of US FDAApproved Drugs Containing Sulfur Atoms Top. Curr. Chem.
(Z) 2018, 376, 376.
3. (a) Wuts, P. G. M Protection for the Amino Group. In Greene’s
Protective Groups in Organic Synthesis, 5th ed.; John Wiley & Sons:
Hoboken, NJ, 2014; Chapter 7. (b) Kocieński, P. J. Amino Proecting
Groups. In Protecting Groups, 3rd ed.; Thieme: New York, NY, 2005;
Chapter 8.
4. Masimirembwa, C. M.; Bredberg, U.; Andersson, T. B. Metabolic
Stability for Drug Discovery and Development: Pharmacokinetic and
Biochemical Challenges. Clin. Pharmacokinet. 2003, 42, 515–528.
5. For modern alternaive methods to prepare sulfonamides, see: (a)
Caddick, S.; Wilden, J. D.; Judd, D. B. Direct Synthesis of Sulfonamides
and Activated Sulfonate Esters from Sulfonic Acids. J. Am. Chem. Soc.
2004, 126, 1024. (b) DeBergh, J. R.; Niljianskul, N.; Buchwald, S. L.
O
F
S
P(NMe2)3
CO2Et
O
O
O
O
N
F
N
H
F
Ph
N
N
F
N
H
N
N
F3C
N
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
CH3
N
F3C
O
Ph
CO2Et
NH
CH3
O
O
S
-O
F
F
N
N
H
N
NH
3, I2
N
F3C
Metabolite Synthesis
, 77% isolated yield
O
S
NH2
5i
O
Synthesis
of
Aryl
Sulfonamides
via
PalladiumCatalyzed
Chlorosulfonylation of Arylboronic Acids. J. Am. Chem. Soc. 2013, 135,
10638. (c) Shavnya, A.; Coffey, S. B.; Smith, A. C.; Mascitti, V. Palladium-
Catalyzed Sulfination of Aryl and Heteroaryl Halides: Direct Access to
Sulfones and Sulfonamides. Org. Lett. 2013, 15, 6226. (d) Johnson, M. W.;
Bagley, S. W.; Mankad, N. P.; Bergman, R. G.; Mascitti, V.; Toste, F. D.
Application of Fundamental Organometallic Chemistry to the Development
of a Gold-Catalyzed Synthesis of Sulfinate Derivatives. Angew. Chem., Int.
Ed. 2014, 53, 4404. (e) Tsai, A. S.; Curto, J. M.; Rocke, B. N.; Dechert-
Schmitt, A.- M. R.; Ingle, G. K.; Mascitti, V. One-Step Synthesis of
Sulfonamides from N-Tosylhydrazones. Org. Lett. 2016, 18, 508. (f)
Deeming, A. S.; Russell, C. J.; Willis, M. C. Palladium(II)-Catalyzed
Synthesis of Sulfinates from Boronic Acids and DABSO: A Redox-Neutral,
Phosphine-Free Transformation. Angew. Chem., Int. Ed. 2016, 55, 747. (g)
Chen, Y.; Murray, P. R. D.; Davies, A. T.; Willis, M. C. Direct Copper-
Catalyzed Three-Component Synthesis of Sulfonamides. J. Am. Chem. Soc.
2018, 140, 8781. (h) Laudadio, G.; Barmpoutsis, E.; Schotten, C.; Struik,
L.; Govaerts, S.; Browne, D. L.; Noël, T. Sulfonamide Synthesis through
Electrochemical Oxidative Coupling of Amines and Thiols J. Am. Chem.
Soc. 2019, 141, 5664.
F
S
N
F
N
H
N
D3C NH Cl
, I2
3
N
F3C
Labeled Compound Synthesis
6i, 3 gram scale
O
NH
CD3
O
73% isolated yield
>99% isotopic purity
aIsolated yields shown. For experimental details, see the
Supporting Information
In summary, we have developed a general platform for the late-
stage functionalization of secondary sulfonamides as part of our
program on upgrading sulfonamides from terminal functional
groups to synthetic handles. The exceptional functional group
tolerance, use of simple reagents in air, and the ability to carry out
unprecedented transformations on prevalent sulfonamide
functional groups makes this a powerful tool for complex molecule
functionalization.
6. Patents WO2012/101239, US2013/85144, WO2014/16434
7. Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krska, S. W.
The medicinal chemist’s toolbox for late stage functionalization of drug-
like molecules. Chem. Soc. Rev. 2016, 45, 546−576.
8. a) Fier, P. S.; Maloney, K. M. NHC-Catalyzed Deamination of
Primary Sulfonamides: A Platform for Late-Stage Functionalization. J. Am.
Chem. Soc. 2019, 141, 1441–1445. See also b) Gauthier, D. R., Jr.;
Yoshikawa, N. A. General, One-Pot Method for the Synthesis of Sulfinic
Acids from Methyl Sulfones. Org. Lett. 2016, 18, 5994.
9. At the time of submission, a novel method for converting primary
sulfonamides to sulfonyl chlorides for late-stage functionalization was
published: Gomez-Palomino, A.; Cornella, J. Selective Late-Stage Sulfonyl
Chloride Formation from Sulfonamides Enabled by Pyry-BF4 Angew.
Chem. Int. Ed. 2019, DOI: 10.1002/anie.201910895.
10. (a) Ballantyne, A. D.; Garnock-Jones, K. P. Dabrafenib: First Global
Approval. Drugs 2013, 73, 1367–1376. (b) Flexner, C.; Bate, G.;
Kirkpatrick, P. Tipranavir. Nature Rev. Drug Discov. 2005, 4, 955–956.
11. (a) Perry, C. M.; Markham, A. Sumatriptan: An Updated Review of
its Use in Migraine. Drugs 1998, 55, 889–922. (b) Wernig, G.; Kharas, M.
G.; Okabe, R.; Moore, S. A.; Leeman, D. S.; Cullen, D. E.; Gozo, M.;
McDowell, E. P.; Levine, R. L.; Doukas, J.; Mak, C. C.; Noronha, G.;
Martin, M.; Ko, Y. D.; Lee, B. H.; Soll, R. M.; Tefferi, A.; Hood, J. D.;
Gilliland, D. G. Efficacy of TG101348, a selective JAK2 inhibitor, in
treatment of a murine model of JAK2V617F-induced polycythemia vera.
Cancer Cell 2008, 13, 311.
ASSOCIATED CONTENT
Supporting Information
Experimental details and characterization data for new compounds.
This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Authors
*E-mail: patrick.fier@merck.com
*E-mail: kevin_maloney@merck.com
ACKNOWLEDGMENT
We would like to thank our colleagues L. C. Campeau, Neil
Strotman, Ben Sherry, and J. J. Yin for their helpful feedback. S.K.
would like to thank the Merck internship program.
REFERENCES
ACS Paragon Plus Environment