G. Hirsch et al. / Tetrahedron Letters 45 (2004) 519–521
521
benzylated phosphonate 17.15 Hydrogenolysis of the
benzyl protecting groups yielded free MEPN, (3R,4S)-
3,4,5-trihydroxy-4-methylpentylphosphonic acid 18.16
€
4. Luttgen, H.; Rohdich, F.; Herz, S.; Wungsintaweekul, J.;
Hecht, S.; Schuhr, C. A.; Fellermeister, M.; Sagner, S.;
Zenk, M.; Bacher, A.; Eisenreich, W. Proc. Natl. Acad.
Sci. U.S.A. 2000, 97, 1062–1067.
5. Wolff, M.; Seemann, M.; Grosdemange-Billiard, C.;
Enantiopure MEPN 18, an isosteric phosphonate ana-
logue of MEP, was synthesized in 12 steps in an overall
yield of 6%. The influence of MEPN 18 on the growth of
Escherichia coli was tested by the agar diffusion method
on LB agar plates (5 cm diameter) inoculated with a
bacteria suspension (100 lL, 5 · 107 cells, exponential
growth phase). No growth inhibition zone was observed
around 6 mm Whatman No. 1 paper disks in the pres-
ence of MEPN (50 or 100 lg), whereas the presence of
fosmidomycin (10 lg), a strong inhibitor of the DXP
reducto-isomerase, induced the formation of a clear
growth inhibition zone. MEPN, like DXPN, also had no
effect on the activity of the DXP isomero-reductase from
E. coli. The DXP reducto-isomerase converted, how-
ever, DXPN into MEPN, which was identified by com-
parison of 31P NMR spectra with the synthetic sample.17
The reaction catalyzed by this enzyme is reversible.18
Using the same enzyme test and 31P NMR spectroscopy
for the characterization of the products,17 we showed
that MEPN is converted in DXPN by the DXP reducto-
isomerase. Additional tests with other MEP pathway
ꢀ
ꢀ
Tritsch, D.; Campos, N.; Rodrıguez-Concepcion, M.;
Boronat, A.; Rohmer, M. Tetrahedron Lett. 2002, 43,
2555–2559.
6. Jomaa, H.; Wiesner, J.; Sanderbrand, S.; Altincicek, B.;
€
Weidemeyer, C.; Hintz, M.; Turbachova, I.; Eberl, M.;
Zeidler, J.; Lichtenthaler, H. K.; Soldati, D.; Beck, E.
Science 1999, 285, 1573–1576.
7. Steinbacher, S.; Kaiser, J.; Eisenreich, W.; Huber, R.;
Bacher, A.; Rohdich, F. J. Biol. Chem. 2003, 278, 18401–
18407.
8. Hoeffler, J.-F.; Pale-Grosdemange, C.; Rohmer, M. Tet-
rahedron 2000, 56, 1485–1489.
9. Berkowitz, D. B.; Bhuniya, D.; Peris, G. Tetrahedron Lett.
1999, 40, 1869–1872.
10. Alper, P. B.; Hendrix, M.; Sears, P.; Wong, C. H. J. Am.
Chem. Soc. 1998, 120, 1965–1978.
11. Emery, F.; Vogel, P. J. Org. Chem. 1995, 60, 5843–5854.
12. Stamm, H.; Gerster, G.; Baumann, T. Chem. Ber. 1983,
116, 2936–2957.
13. Ireland, R. E.; Norbeck, D. W. J. Org. Chem. 1985, 50,
2198–2200.
14. Iversen, T.; Bundle, D. R. J. Chem. Soc., Chem. Commun.
1981, 1240–1241.
enzymes, such as 2-C-methyl-D-erythritol 4-phosphate
cytidyltransferase, will follow to investigate if MEPN
can act as an inhibitor of this biosynthetic pathway.
15. 1H NMR (300 MHz, CDCl3 + 1 drop D2O): d ¼ 1:11 (3H,
s, CH3), 1.64 (1H, m), 1.86 (2H, m), 2.05 (1H, m), 3.66 and
3.72 (2 · 1H, 2d, JHa;Hb ¼ 11:9 Hz, 4-C benzylic CH2),
2
3
3
3.73 (1H, dd, J3;H-4a ¼ 10:4 Hz, J3;H-4b ¼ 1:5 Hz, 3-H),
4.49 (2H, s, 5-H), 4.96 and 5.06 (2 · 1H, 2dd,
3
3
2JHa;Hb ¼ 11:8 Hz, JHa;P ¼ 8:2 Hz, JHb;P ¼ 9:1 Hz, phos-
phonate benzylic ester CH2), 4.96 and 5.07 (2 · 1H, 2dd,
2JHa;Hb ¼ 11:8 Hz, 3JHa;P ¼ 8:2 Hz, 3JHb;P ¼ 9 Hz, phospho-
nate benzylic ester CH2), 7.32 (15H, m, 3Ph). 13C NMR
(75 MHz, CDCl3): d ¼ 16:0 (CH3), 23.5 (CH2,
Acknowledgements
We thank Mr. J.-D. Sauer for the 2D NMR measure-
ments and Mr. R. Huber for the MS analyses. This
investigation was supported by a grant to M.R. from the
ÔInstitut Universitaire de FranceÕ. G.H. thanks the
2
1JC;P ¼ 137:5 Hz), 24.4 (CH2, JC;P ¼ 5:5 Hz), 64.2 (CH2),
2
65.2 (CH2), 67.4 (CH2, JC;P ¼ 6:2 Hz), 67.5 (CH2,
1
2JC;P ¼ 6:2 Hz), 75.4 (CH, JC;P ¼ 12:9 Hz), 79.1 (quater-
nary C), 127.7, 128.1, 128.6 and 128.7 (15 aromatic CH),
ꢁ
ÔMinistere de la Jeunesse, de lÕEducation Nationale et de
3
136.4 (2 aromatic quaternary C, JC;P ¼ 6:2 Hz), 138.9
la RechercheÕ for financial support.
(aromatic quaternary C). 31P NMR (121 MHz, CDCl3):
d ¼ 34:7 (s). HRMS (FABþ): calcd for C27H34O6P
(M+H)þ, m=z ¼ 485:2093; found, m=z ¼ 485:2099.
16. 1H NMR (300 MHz, D2O): d ¼ 1:10 (3H, s, CH3), 1.40
(2H, m), 1.68 (2H, m), 3.49 and 3.59 (2 · 1H, 2d,
References and Notes
3
2JHa;Hb ¼ 11:7 Hz, 5-H). 3.50 (1H, dd, J3;4-Ha ¼ 10:3 Hz,
3J3;4-Hb ¼ 1:6 Hz, 3-H), 13C NMR (75 MHz, D2O):
1. Rohmer, M. In Comprehensive Natural Product Chemistry,
Isoprenoids Including Steroids and Carotenoids; Cane, D.
E., Ed.; Pergamon, 1999; Vol. 2, Chapter 2, pp 45–68.
2. Takahashi, S.; Kuzuyama, T.; Watanabe, H.; Seto, H.
Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 9879–9884.
3. Rohdich, F.; Wungsintaweekul, J.; Fellermeister, M.;
Sagner, S.; Herz, S.; Kis, K.; Eisenreich, W.; Bacher, A.;
Zenk, M. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 11758–
11763.
1
d ¼ 17:7 (CH3), 24.5 (CH2), 25.3 (CH2, JC;P ¼ 131 Hz),
66.4 (CH2), 74.8 (quaternary C), 75.2 (CH, 3JC;P ¼ 16 Hz).
31P NMR (121 MHz, D2O): d ¼ 24:4 (s). Electrospray MS:
m=z ¼ 213 (M)Hþ, molecular monoanion of 18).
17. Meyer, O.; Grosdemange-Billiard, C.; Tritsch, D.; Roh-
mer, M. Org. Biomol. Chem., in press.
18. Hoeffler, J. F.; Tritsch, D.; Grosdemange-Billiard, C.;
Rohmer, M. Eur. J. Biochem. 2002, 269, 4446–4457.