M. Mastihubovꢀa et al. / Carbohydrate Research 339 (2004) 425–428
427
(d, J1;2 6.9 Hz, H-1), 4.52 (dd, J2;3 8.9 Hz, H-2), 4.93 (dt,
1H, J3;4 8.8 Hz, H-4), 4.94 (t, 1H, H-3), 7.32 (d, 2H, J
8.1 Hz, H-30,50), 7.78 (d, 2H, J 8.3 Hz, H-20,60); 13C
NMR (CDCl3): d 20.7 (2 · COCH3), 21.6 (CH3), 56.8
(OCH3), 62.2 (C-5), 69.0 (C-4), 70.8 (C-3), 77.9 (C-2),
101.5 (C-1), 2 · 128.00, 2 · 129.5, 134.3, 144.7 (C–Ar),
169.8 (COCH3), 169.9 (COCH3). Anal. calcd for
C17H22O9S: C, 50.74; H, 5.51; S, 7.97. Found: C, 50.87;
H, 5.77; S, 8.18.
4.44 (dd, J2;3 9.3 Hz, H-2), 4.56 (s, 2H, CH2), 5.21 (t, 1H,
H-3), 7.24–7.34 (m, 7H, H–Ph, H-30,50), 7.76 (d, 2H, J
8.3 Hz, H-20,60); 13C NMR (CDCl3): d 20.8 (COCH3),
21.6 (CH3), 56.9 (OCH3), 63.7 (C-5), 72.7 (C-3), 73.0
(CH2), 75.2 (C-4), 78.7 (C-2), 101.8 (C-1), 127.7, 128.0,
128.5, 129.4, 129.6 (7 · CH–Ar), 134.5, 137.5, 144.5
(3 · C–Ar), 169.9 (COCH3). Anal. calcd for C22H26O8S:
C, 58.66; H, 5.82; S, 7.12. Found: C, 58.55; H, 6.12;
S, 7.10.
1.6. Methyl 4-O-benzyl-2,3-anhydro-b-D-lyxopyranoside
(2)
1.4. Methyl 3-O-acetyl-2-O-tosyl-b-D-xylopyranoside (6)
Compound 5 (1 g, 2.5 mmol) was dissolved in toluene
(100 mL), then n-BuOH (0.8 mL) and Lipase PS (5 g)
were added. The reaction mixture was shaken at 40 ꢁC
and 200 rpm until complete disappearance of 5 (about
4–5 days). The reaction was stopped by filtration of the
lipase. The regenerated lipase was used for the same
reaction for another two or three runs. The solvent was
eliminated under diminished pressure and the product was
separated from the starting compound (about 5%) by
column chromatography (2:1 toluene–EtOAc) to give 6
The soln of 7 (2.50 g, 5.6 mmol) in 0.7 M sodium meth-
oxide (22 mL) was stirred overnight at room tempera-
ture. It was then neutralised with 1 M H2SO4 and the
product was extracted with CH2Cl2 (3 · 40 mL). The
organic layer was washed twice with water, dried over
Na2SO4 and concentrated under diminished pressure.
The crude syrup was purified by column chromatogra-
phy (2:1 toluene–EtOAc) to afford epoxide 2 (1.23 g,
20
1
93%) as a colourless oil: ½aꢀ )77 (c 1.0, CHCl3); H
D
NMR (CDCl3): d 3.33 (ddd, 1H, J2;3 3.7, J3;4 1.9 Hz, H-
3), 3.37 (t, 1H, J1;2 2.9 Hz, H-2), 3.46 (s, 3H, OCH3), 3.59
(dt, 1H, J4;5a 3.1, J3;5a 1.6, J5a;5b 12.1 Hz, H-5a), 3.76–3.78
(m, 1H, H-4), 3.80 (dd, 1H, J4;5b 2.1 Hz, H-5b), 4.67 (dd,
2H, CH2), 4.93 (d, 1H, H-1), 7.29–7.37 (m, 5H, H–Ph);
13C NMR (CDCl3): d 50.5 (C-3), 51.5 (C-2), 55.8
(OCH3), 58.6 (C-5), 70.4 (C-4), 72.0 (CH2), 94.9 (C-1),
2 · 127.9, 128.1, 2 · 128.6, 137.6 (C–Ph). Anal. calcd for
C13H16O4: C, 66.09; H, 6.83. Found: C, 65.67; H, 6.97.
as a colourless oil, which precipitated in diethylether as a
20
white solid (0.8 g, 89%): mp 108–110 ꢁC; ½aꢀ )27 (c 1.0,
D
CHCl3); 1H NMR (CDCl3): d 2.10 (s, 3H, COCH3), 2.44
(s, 3H, CH3), 2.74 (d, 1H, JH–OH;H-4 5.9 Hz, H–OH), 3.25
(s, 3H, OCH3), 3.30 (dd, 1H, J4;5a 9.4, J5a;5b 11.8 Hz, H-
5a), 3.79 (m, 1H, H-4), 4.03 (dd, 1H, J4;5b 5.2 Hz, H-5b),
4.28 (d, J1;2 7.1 Hz, H-1), 4.49 (dd, J2;3 8.9 Hz, H-2), 4.94
(t, 1H, J3;4 8.8 Hz, H-3), 7.32 (d, 2H, J 8.1 Hz, H-30,50),
7.79 (d, 2H, J 8.3 Hz, H-20,60); 13C NMR (CDCl3): d 20.8
(COCH3), 21.6 (CH3), 56.8 (OCH3), 65.1 (C-5), 68.9 (C-
4), 75.1 (C-3), 78.0 (C-2), 101.6 (C-1), 2 · 127.9,
2 · 129.4, 134.6, 144.6 (C–Ar), 171.8 (COCH3). Anal.
calcd for C15H20O8S: C, 49.99; H, 5.59; S, 8.90. Found:
C, 50.35; H, 5.95; S, 8.76.
Acknowledgements
This work was supported by a grant from the Slovak
Grant Agency for Science VEGA 2/3079/23. The au-
ꢂ
ꢀ
ꢂ
ꢀ
thors thank A. Karovicova, G. Kosicky, J. Tonka and
K. Paule for NMR spectra, optical rotation measure-
ments, and microanalyses.
1.5. Methyl 3-O-acetyl-4-O-benzyl-2-O-tosyl-b-D-xylo-
pyranoside (7)
Compound 6 (3.6 g, 10 mmol) and benzyl trichloroace-
timidate (3.72 mL, 20 mmol) were dissolved in dry 2:1
cyclohexane–CH2Cl2 (90 mL). After cooling to )5 ꢁC,
trifluoromethanesulfonic acid (0.44 mL, 5 mmol) was
added slowly and the reaction mixture was stirred for 3 h
under N2 at room temperature. Then CH2Cl2 (200 mL)
was added and the soln was washed with aq saturated
NaHCO3, dried over MgSO4 and evaporated. The crude
oil was chromatographed (1:0 fi 5:1 toluene–EtOAc) to
obtain a slowly solidifying product 7 (4.10 g, 91%): mp
References
1. (a) Lugemwa, F. N.; Denison, L. J. Carbohydr. Chem.
1997, 16, 1433–1443; (b) Inghardt, T.; Frejd, T. Synthesis
1990, 285–291.
^ ꢀ
2. (a) Biely, P.; Cote, G. L.; Kremnicky, L.; Greene, R. V.;
Tenkanen, M. FEBS Lett. 1997, 420, 121–124; (b) Biely,
ꢀ
^ ꢀ
P.; Cote, G. L.; Kremnicky, L.; Weisleder, D.; Greene, R.
V. Biochim. Biophys. Acta 1996, 1298, 209–222; (c) Biely,
ꢀ
^ ꢀ
P.; Cote, G. L.; Kremnicky, L.; Greene, R. V.; Dupont,
C.; Kluepfel, D. FEBS Lett. 1996, 396, 257–260.
ꢀ
20
1
ꢀ
^ ꢀ
3. Biely, P.; Mastihubova, M.; Cote, G. L.; Greene, R. V.
Biochim. Biophys. Acta 2003, 1622, 82–83.
71–73 ꢁC (from i-PrOH); ½aꢀ )29 (c 1.0, CHCl3); H
D
NMR (CDCl3): d 2.02 (s, 3H, COCH3), 2.42 (s, 3H,
CH3), 3.24 (s, 3H, OCH3), 3.26 (dd, 1H, J4;5a 9.9, J5a;5b
11.8 Hz, H-5a), 3.60 (dt, 1H, J3;4 9.2 Hz, H-4), 3.96 (dd,
1H, J4;5b 5.2 Hz, H-5b), 4.22 (d, J1;2 7.4 Hz, H-1),
4. (a) Ziser, L.; Setyawati, I.; Withers, S. G. Carbohydr. Res.
1995, 274, 137–153; (b) Defaye, J.; Driguez, H.; John, M.;
Schmidt, J.; Ohleyer, E. Carbohydr. Res. 1985, 139, 123–
132.