Table 1 Oxidation of methane by H2O2 in water catalyzed by
supported (FePctBu4)2N complexa
similar structural feature, binuclear iron sites. However, the
coordination spheres of these sites are different. In MMO, the
diiron centre contains four glutamate (carboxyl ligand) and
two histidine (N-ligand) residues and two iron ions are con-
nected via the carboxylate of glutamate and water or hydro-
xide fragments. Iron ions in m-nitrido dimer are coordinated
with four nitrogen atoms of planar exogenous phthalocyanine
ligands which are nevertheless structurally related to endogen-
ous porphyrin. Further research is necessary to provide deeper
insights into this novel fascinating chemistry.
[HCOOH]/
Run T/1C mM
[CH2O]/
TONHCOOH mM
Total
TONCH O TONb
2
1
2
3
4
5
6
7c
25
40
50
60
70
80
60
6.0
8.6
9.2
10.5
11.7
12.8
69.0
(34.1)
13.0
18.6
21.0
22.8
25.2
27.3
134.6
(72.8)
0
0
39.0
76.6
84.4
74.8
79.0
84.1
436.8
4.8
4.7
1.5
0.8
0.5
7.6
10.4
10.7
3.2
1.7
1.1
16.5
a
Conditions: 32 bars CH4; 2 mL H2O; catalyst, 0.925 mmol (0.875
mmol for run 3); 678 mmol H2O2; reaction time 20 h (48 h for
Notes and references
b
1 R. H. Crabtree, Chem. Rev., 1995, 95, 987.
2 M. Merkx, D. A. Kopp, M. H. Sazinsky, J. L. Blazyk, J. Muller
¨
run1). Total TON was calculated as 3 Â HCOOH/catalyst + 2 Â
c
CH2(OH)2/catalyst. In 0.1 M H2SO4; 678 mmol H2O2 were added at
reaction times 0 and 16 h. Values in parentheses were measured before
the second addition of H2O2.
and S. J. Lippard, Angew. Chem., Int. Ed., 2001, 40, 2782.
3 M.-H. Baik, M. Newcomb, R. A. Friesner and S. J. Lippard,
Chem. Rev., 2003, 103, 2385; E. G. Kovaleva, M. B. Neibergall,
S. Chakrabarty and J. D. Lipscomb, Acc. Chem. Res., 2007, 40,
475.
improvement of the catalytic activity was observed in the
presence of 0.1 M H2SO4. The TONHCOOH was increased by
more than a factor of 3 to attain 72.8. After completion of the
first reaction, a new portion of H2O2 was added directly to the
reaction mixture. Remarkably, the catalytic system retained
practically the same catalytic activity in the second cycle (Table 1,
run 7), indicating a high stability of the catalyst and even a
possibility of recycling. The catalyst exhibits a very high perfor-
mance: more than 150 moles CH4 per mole of catalyst were
oxidized to useful products. This activity is far higher than that of
most published systems operating via CH4 activation7–10,11b,12
and approaches that of the most efficient so far, Periana’s system
based on Pt(II) bipyrimidine complex in oleum at 220 1C.11a Total
TON = 437 and 30–50% product yields on H2O2 were attained
using (FePctBu4)2N. This catalytic system shows several attrac-
tive features: the clean oxidant (H2O2) and reaction medium
(H2O), and the fact that solid catalyst can easily be separated by
filtration. In contrast to the much more expensive porphyrin and
non-heme complexes, phthalocyanines can be accessible in bulk
quantities.20
It should be noted that the Fe–N–Fe unit of (FePctBu4)2N is
essential for the catalytic activity. Terminal nitrido ligand
stabilizes FeV and even FeVI states in mononuclear cyclam
complexes.21 One can suggest that m-nitrido ligand in a diiron
complex could also stabilize ultra high valent Fe states.
Mononuclear FePctBu4 and its diiron m-oxo (Fe–O–Fe) and
m-carbido (FeQCQFe) complexes15 showed no oxidation of
CH4. m-Nitrido diiron complex and soluble MMO share a
4 L. Shu, J. C. Nesheim, K. Kauffmann, E. Munck, J. D. Lipscomb
¨
and L. Que, Jr, Science, 1997, 275, 515.
5 E. Y. Tshuva and S. J. Lippard, Chem. Rev., 2004, 104, 987.
6 M. Costas, J.-U. Rohde, A. Stubna, R. Y. N. Ho, L. Quaroni, E.
Munck and L. Que, Jr, J. Am. Chem. Soc., 2001, 123, 12931.
¨
7 A. E. Shilov and G. B. Shul’pin, Chem. Rev., 1997, 97, 2879.
8 A. E. Shilov, Activation of Saturated Hydrocarbons by Transition
Metal Complexes, Reidel, Dordrecht, 1984.
9 R. A. Periana, G. Bhalla, W. J. Tenn, K. J. H. Young, X. Y. Liu,
O. Mironov, C. J. Jones and V. R. Ziatdinov, J. Mol. Catal. A:
Chem., 2004, 220, 7.
10 R. A. Periana, D. J. Taube, E. R. Evitt, D. G. Loffler, P. R.
¨
Wentrcek, G. Voss and T. Masuda, Science, 1993, 259, 340.
11 (a) R. A. Periana, D. J. Taube, S. Gamble, H. Taube, T. Satoh and
H. Fujii, Science, 1998, 280, 560; (b) R. A. Periana, O. Mironov, D.
Taube, G. Bhalla and C. J. Jones, Science, 2003, 301, 814.
12 I. Bar-Nahum, A. M. Khenkin and R. Neumann, J. Am. Chem.
Soc., 2004, 126, 10236.
´
13 (a) A. B. Sorokin, J.-L. Seris and B. Meunier, Science, 1995, 268,
1163; (b) A. B. Sorokin and B. Meunier, Chem.–Eur. J., 1996, 2,
1308; (c) A. B. Sorokin, S. De Suzzoni-Dezard, D. Poullain, J.-P.
Noel and B. Meunier, J. Am. Chem. Soc., 1996, 118, 7410; (d) C.
¨
Perollier and A. B. Sorokin, Chem. Commun., 2002, 1548; (e) C.
rollier, C. Pergrale-Mejean and A. B. Sorokin, New J. Chem.,
´
Pe
´
2005, 29, 1400; (f) O. V. Zalomaeva and A. B. Sorokin, New J.
Chem., 2006, 30, 1768; (g) A. B. Sorokin, S. Mangematin and C.
Pergrale, J. Mol. Catal. A: Chem., 2002, 182–183, 267.
14 (a) L. A. Bottomley, J.-N. Gorce, V. L. Goedken and C. Ercolani,
Inorg. Chem., 1985, 24, 3733; (b) B. Floris, M. P. Donzello and C.
Ercolani, in Porphyrin Handbook, ed. K. M. Kadish, K. M. Smith
and R. Guilard, Elsevier Science, San Diego, 2003, vol. 18, pp.
1–62.
15 See the Supporting Information.
16 D. A. Summerville and I. A. Cohen, J. Am. Chem. Soc., 1976, 98,
1747.
17 M. Martinho, F. Banse, J. Sainton, C. Philouze, R. Guillot, G.
Blain, P. Dorlet, S. Lecomte and J.-J. Girerd, Inorg. Chem., 2007,
46, 1709; M. P. Jensen, M. Costas, R. Y. N. Ho, J. Kaizer, A. M.
Payeras, E. Munck, L. Que, Jr, J.-U. Rohde and A. Stubna, J. Am.
¨
Chem. Soc., 2005, 127, 10512.
18 D. Quinonero, K. Morokuma and D. G. Musaev, J. Am. Chem.
Soc., 2005, 127, 6548.
19 F. T. de Oliveira, A. Chanda, D. Banerjee, X. Shan, S. Mondal, L.
Que, Jr, E. L. Bominaar, E. Munck and T. J. Collins, Science,
2007, 315, 835.
¨
20 The worldwide production of phthalocyanines is estimated to be
more than 80 000 tons per year: D. Wohrle, Macromol. Rapid
Commun., 2001, 22, 68.
21 (a) J. F. Berry, E. Bill, E. Bothe, S. DeBeer George, B. Mienert, F.
Neese and K. Wieghardt, Science, 2006, 312, 1937; (b) N. Aliaga-
Alcalde, S. DeBeer George, B. Mienert, E. Bill, K. Weighardt and
F. Neese, Angew. Chem., Int. Ed., 2005, 44, 2908.
Fig. 4 Proposed mechanism of the formation of active species in the
(FePctBu4)2N–H2O2
system
and
oxidation
of
methane.
FeIV–N–FeVQO stands for species having 2 redox equivalents above
the FeIIIFeIV state.
ꢀc
This journal is The Royal Society of Chemistry 2008
2564 | Chem. Commun., 2008, 2562–2564