1174 Organometallics, Vol. 28, No. 4, 2009
Dietrich et al.
example.3,24-28 To the best of our knowledge, well-characterized
alkylated heterobimetallic complexes of uranium and group 13
metals have not been reported so far.17 Herein we present the
initial results of a study aiming at the reactivity of known
metallocenes Cp*2UCl2,29 Cp*2UMe2,30 and Cp*2UMeCl31
toward organoaluminum reagents, as well as trimethylgallium
and -indium.
Chart 1
Results and Discussion
The orange-red precursor compounds Cp*2UCl2 (1a),29
Cp*2UMe2 (1b),30 and Cp*2UMeCl (1c)31 were synthesized
according to literature procedures. Such discrete organoactini-
de(IV) complexes have been subjected to a number of X-ray
crystallographic investigations with bulky cyclopentadienyl
ligands C5R5 stabilizing mononuclear complexes with terminally
bonded methyl and chloro ligands (Table 1),32-35 but surpris-
ingly Cp*2UMeCl (1c) has never been structurally characterized
by X-ray diffraction. Compound 1c crystallizes from toluene
in space group P21 with unit cell parameters that are very close
to those of crystals of 1a obtained in this study from toluene/
hexane solution in the monoclinic space group P21/n (Figure
1). Previously, single crystals of 1a obtained by sublimation
were reported to crystallize in a different crystal system
(orthorhombic Fmm2).29 Although the structure of 1c had
disorder between the Me and Cl ligands, the crystal data suggest
that this is Cp*2UMeCl and not a cocrystallization of 1a and
1b, the latter of which crystallizes in I1/a. Metrical parameters
cannot be discussed for 1c due to the disorder. A model in which
the Me and Cl ligands were 50% disordered at each position
gave the best results. The overall rigidity and chemical robust-
ness of the well-shielded metallocene environment is anticipated
to facilitate reactivity studies involving U-X moieties and group
13 reagents. Additionally, comparisons to the corresponding
well-investigated metallocene chemistry of the group 4 and rare-
earth metals can be drawn.
cally characterized and found to contain three η2-coordinated
tetrachloroaluminate ligands.7
Later on, closely related complexes with hexamethylbenzene8
and toluene π-donors9 were investigated with uranium, and a
pronounced similarity to group 3 and 4 transition metals and
lanthanides was found. While the synthesis conditions for such
tetrachloroaluminate complexes, that is, Fischer’s reductive
Friedel-Crafts reaction,18 routinely involved UIV/UIII redox
couples (cf., ZrIV/ZrII yielding (η6-C6H6)2ZrII(AlCl4)2),19 struc-
tural similarities were found with redox-stable lanthanide
metal(III) congeners (e.g., isostructural (η6-C6Me6)U(AlCl4)3 and
(η6-C6Me6)Sm(AlCl4)3).8c,20 Higher agglomerated complexes
[UIV2(η6-C6Me6)2Cl4(µ-Cl)3]+[AlCl4]8b and [UIII2(η6-C6Me6)3(µ3-
Cl)2(µ2-Cl)3(µ1,η2-AlCl4)]+[AlCl4]- ([B]+[AlCl4]-, Chart 1)8a
were shown to form separated ion pairs.
Rather distinct reactivity patterns have been discovered with
lanthanide and group 4 metal complexes with organoaluminum
reagents and in particular with trimethylaluminum. While the
lanthanides form a variety of thermally stable homo- and
heteroleptic tetraalkylaluminate complexes,2b,21 the isolation of
corresponding group 4 derivatives seems to be hampered by
their intrinsic instability.22 The complex [Ti(NtBu)(Me3[9]-
aneN3)(µ-Me)2AlMe2][BArF ] appears to be the only crystallo-
Reactivity of Cp*2UCl2. The metallocene bis(chloride)
complex 1a did not react with any of the group 13 reagents
under study (trimethylaluminum, triethylaluminum, trimethyl-
gallium, and trimethylindium) in hexane at ambient temperature.
After 2 d, only unreacted 1a was recovered. Neither chloro/
alkyl ligand exchange occurred, nor did adduct complexes of
type [Cp*2UCl2(MR3)x] (M ) Al, Ga, In) form upon crystal-
lization. For comparison, in group 4 chemistry, AlR3 addition
and chloro/alkyl ligand exchange is commonly observed when
complexes Cp′2MCl2 (M ) Ti, Zr, Hf) are treated with
4
graphically authenticated tetraalkylaluminate derivative.23 It is
noteworthy that C-H bond activation is a common reaction
pathway in such heterobimetallic complexes, with the “Tebbe
reagent”, Cp2Ti(µ-Cl)(µ-CH2)AlMe2, being the most prominent
(18) Fischer, E. O.; Ro¨hrschied, F. J. Organomet. Chem. 1966, 6, 53.
(19) Calderazzo, F.; Pallavicini, P.; Pampaloni, G. J. Chem. Soc., Dalton
Trans. 1990, 1813.
(20) Cotton, F. A.; Schwotzer, W. J. Am. Chem. Soc. 1986, 108, 4657.
(21) (a) Evans, W. J.; Anwander, R.; Ziller, J. W. Organometallics 1995,
14, 1107. (b) Zimmermann, M.; Frøystein, N. Å.; Fischbach, A.; Sirsch,
P.; Dietrich, H. M.; To¨rnroos, K. W.; Herdtweck, E.; Anwander, R.
Chem.sEur. J. 2007, 13, 8784.
(22) Bochmann, M.; Lancaster, S. J. Angew. Chem., Int. Ed. Engl. 1994,
33, 1634.
(23) Bolton, P. D.; Clot, E.; Cowley, A. R.; Mountford, P. J. Am. Chem.
Soc. 2006, 128, 15005.
(24) (a) Kaminsky, W.; Kopf, J.; Thirase, G. Liebigs Ann. Chem. 1974,
1531. (b) Kaminsky, W.; Sinn, H. Liebigs Ann. Chem. 1975, 424. (c)
Kaminsky, W.; Kopf, J.; Sinn, H.; Vollmer, H. J. Angew. Chem., Int. Ed.
Engl. 1976, 15, 629. (d) Kopf, J.; Kaminsky, W.; Vollmer, H. J. Cryst.
Struct. Commun. 1980, 9, 197. (e) Kopf, J.; Vollmer, H. J.; Kaminsky, W.
Cryst. Struct. Commun. 1980, 9, 271. (f) Kopf, J.; Vollmer, H. J.; Kaminsky,
W. Cryst. Struct. Commun. 1980, 9, 985. (g) Kaminsky, W.; Steiger, R.
Polyhedron 1988, 7, 2375.
(25) Siedle, A. R.; Newmark, R. A.; Schroepfer, J. N.; Lyon, P. A.
Organometallics 1991, 10, 400.
(26) Kickham, J. E.; Gue´rin, F.; Stephan, D. W. J. Am. Chem. Soc. 2002,
124, 11486.
(29) (a) Manriquez, J. M.; Fagan, P. J.; Marks, T. J. J. Am. Chem. Soc.
1978, 100, 3939. (b) Spirlet, M. R.; Rebizant, J.; Apostolidis, C.;
Kanellakopulos, B. Acta Crystallogr. 1992, C48, 2135.
(30) (a) Jantunen, K. C.; Burns, C.; Castro-Rodriguez, I.; Da Re, R. E.;
Golden, J. T.; Morris, D. E.; Scott, B. L.; Taw, F. L.; Kiplinger, J. L.
Organometallics 2004, 23, 4682. (b) Barnea, E.; Andrea, T.; Kapon, M.;
Berthet, J.-C.; Ephritikhine, M.; Eisen, M. S. J. Am. Chem. Soc. 2004, 126,
10860.
(31) (a) Fagan, P. J.; Manriquez, J. M.; Maatta, E. A.; Seyam, A. M.;
Marks, T. J. J. Am. Chem. Soc. 1981, 103, 6650. (b) Morris, D. E.; Da Re,
R. E.; Jantunen, K. C.; Castro-Rodriguez, I.; Kiplinger, J. L. Organometallics
2004, 23, 5142.
(32) (a) Straub, T.; Haskel, A.; Neyroud, T. G.; Kapon, M.; Botoshansky,
M.; Eisen, M. S. Organometallics 2001, 20, 5017. (b) Evans, W. J.;
Kozimor, S. A.; Ziller, J. W.; Fagin, A. A.; Bochkarev, M. N. Inorg. Chem.
2005, 44, 3993. (c) Evans, W. J.; Kozimor, S. A.; Hillmann, W. R.; Ziller,
J. W. Organometallics 2005, 24, 4676.
(33) Lukens, W. W., Jr.; Beshouri, S. M.; Blosch, L. L.; Stuart, A. L.;
Andersen, R. A. Organometallics 1999, 18, 1235.
(34) Blake, P. C.; Lappert, M. F.; Taylor, R. G.; Atwood, J. L.; Hunter,
W. E.; Zhang, H. J. Chem. Soc., Dalton Trans. 1995, 3335.
(35) Hughes, R. P.; Lomprey, J. R.; Rheingold, A. L.; Haggerty, B. S.;
Yap, G. P. A. J. Organomet. Chem. 1996, 517, 89.
(27) (a) Dietrich, H. M.; Grove, H.; To¨rnroos, K. W.; Anwander, R.
J. Am. Chem. Soc. 2006, 128, 1458. (b) Dietrich, H. M.; To¨rnroos, K. W.;
Anwander, R. J. Am. Chem. Soc. 2006, 128, 9298.
(28) Gerber, L. C. H.; LeRoux, E.; To¨rnroos, K. W.; Anwander, R.
Chem.sEur. J. 2008, 14, 9555.